【題目】已知橢圓C的方程為 +
=1(a>b>0),雙曲線
﹣
=1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4
.
(1)求橢圓C的方程;
(2)設F1 , F2分別為橢圓C的左,右焦點,過F2作直線l(與x軸不重合)交于橢圓于A,B兩點,線段AB的中點為E,記直線F1E的斜率為k,求k的取值范圍.
【答案】
(1)解:由一條漸近線與x軸所成的夾角為30°,則 =tan30°=
,即a2=3b2,
由2c=4 .c=2
,則a2+b2=8,
解得:a2=8,b2=2,
∴橢圓的標準方程: ;
(2)解:由(1)可知:F2(2,0),直線AB的方程:x=ty+2,A(x1,y1),B(x2,y2),
,整理得:(t2+3)y2+4ty﹣2=0,
y1+y2=﹣ ,x1+x2=
,
則E( ,﹣
),
由F1(﹣2,0),則直線F1E的斜率k= =﹣
,
①當t=0時,k=0,
②當t≠0時,丨k丨= =
≤
,
即丨k丨∈(0, ],
∴k的取值范圍[﹣ ,
].
【解析】(1)利用已知條件建立a和b的方程組,解方程組,可得橢圓的方程;(2)設直線AB的方程,A,B的坐標,聯(lián)立方程組消去x,利用韋達定理可得斜率丨k丨用t表示,利用基本不等式可得k的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
的半徑為2,圓心在
軸的正半軸上,且與直線
相切.
(1)求圓的方程。
(2)在圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且△
的面積最大?若存在,求出點
的坐標及對應的△
的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足
,且
.
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列
的通項公式;
(Ⅱ)若記為滿足不等式
的正整數(shù)
的個數(shù),設
,求數(shù)列
的最大項與最小項的值.
【答案】(1)見解析;(2)最大項為,最小項為
.
【解析】試題分析:(Ⅰ)對兩邊取倒數(shù),移項即可得出
,故而數(shù)列
為等差數(shù)列,利用等差數(shù)列的通項公式求出
,從而可得出
;(Ⅱ)根據(jù)不等式
,,得
,又
,從而
,當
為奇數(shù)時,
單調(diào)遞減,
;當
為偶數(shù)時
單調(diào)遞增,
綜上
的最大項為
,最小項為
.
試題解析:(Ⅰ)由于,
,則
∴,則
,即
為常數(shù)
又,∴數(shù)列
是以1為首項,
為公比的等比數(shù)列
從而,即
.
(Ⅱ)由即
,得
,
又,從而
故
當為奇數(shù)時,
,
單調(diào)遞減,
;
當為偶數(shù)時,
,
單調(diào)遞增,
綜上的最大項為
,最小項為
.
【題型】解答題
【結(jié)束】
22
【題目】已知向量,
,若函數(shù)
的最小正周期為
,且在區(qū)間
上單調(diào)遞減.
(Ⅰ)求的解析式;
(Ⅱ)若關(guān)于的方程
在
有實數(shù)解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P是長軸長為 的橢圓Q:
上異于頂點的一個動點,O為坐標原點,A為橢圓的右頂點,點M為線段PA的中點,且直線PA與OM的斜率之積恒為
.
(1)求橢圓Q的方程;
(2)設過左焦點F1且不與坐標軸垂直的直線l交橢圓于C,D兩點,線段CD的垂直平分線與x軸交于點G,點G橫坐標的取值范圍是 ,求|CD|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C1的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點P的極角為
,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無零點,求a最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,曲線C1的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點P的極角為
,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 :方程
有兩個不等的正根;
:方程
表示焦點在
軸上的雙曲線.
(1)若 為真命題,求實數(shù)
的取值范圍;
(2)若“ 或
”為真,“
且
”為假,求實數(shù)
的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com