日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知m,n,k是正數,且滿足mnk(m+n+k)=4,則(m+n)(m+k)的最小值
4
4
分析:由于m,n,k是正數,且滿足mnk(m+n+k)=4,可得m2+mn+mk=
4
nk
.于是利用基本不等式的性質可得(m+n)(m+k)=m2+mn+mk+nk=
4
nk
+nk
≥2
nk•
4
nk
解答:解:∵m,n,k是正數,且滿足mnk(m+n+k)=4,∴m2+mn+mk=
4
nk

∴(m+n)(m+k)=m2+mn+mk+nk=
4
nk
+nk
≥2
nk•
4
nk
=4,當且僅當nk=2,取等號.
∴(m+n)(m+k)的最小值是4.
故答案為4.
點評:變形利用基本不等式的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•重慶一模)設數列{an}的各項都為正數,其前n項和為Sn,已知對任意n∈N*,2
Sn
是an+2 和an的等比中項.
(Ⅰ)證明數列{an}為等差數列,并求數列{an}的通項公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m 的一切正整數n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數m共有多少個?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知m,n,k是正數,且滿足mnk(m+n+k)=4,則(m+n)(m+k)的最小值______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知m,n,k是正數,且滿足mnk(m+n+k)=4,則(m+n)(m+k)的最小值______.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省連云港市東海高級中學高三(下)3月月考數學試卷(實驗班)(解析版) 題型:填空題

已知m,n,k是正數,且滿足mnk(m+n+k)=4,則(m+n)(m+k)的最小值   

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产污视频网站 | 99久久网站| 久久全国免费视频 | 久久第一区 | 日本不卡一区二区 | 欧美一区二区三区黄色 | 欧美国产精品 | 久草福利在线视频 | 在线观看国产视频 | 精品三级在线观看 | 中文字幕在线不卡 | 亚洲精品免费观看 | 欧美日韩在线视频一区二区 | 日韩欧美国产精品 | 精品国产一区二区在线 | 99色播| 久久国产欧美一区二区三区精品 | 国产精品久久久久久久久久免费 | 色婷婷久久 | 午夜影晥 | 中文字幕一区二区不卡 | 欧美精品在线一区二区三区 | 日日爱夜夜爽 | 在线成人免费视频 | 日韩午夜场| 91精品国产91综合久久蜜臀 | 久久精品网址 | 一本色道久久加勒比88综合 | 亚洲九九 | 天堂中文字幕在线 | 久久99精品久久久久久国产越南 | 亚洲第一区在线 | 国产极品视频 | 成人毛片在线观看 | 超碰免费人人 | 日韩av成人| 国产精品久久久久久亚洲调教 | 伦理午夜电影免费观看 | 欧美成人午夜免费视在线看片 | 天堂动漫 | 国产一区二区三区视频观看 |