日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax2+bx(a≠0)的導函數f'(x)=-2x+7,數列{an}的前n項和為Sn,點Pn(n,Sn)(n∈N*)均在函數y=f(x)的圖象上.
(I)求數列{an}的通項公式及Sn的最大值;
(II)令,其中n∈N*,求{nbn}的前n項和.
【答案】分析:(I)求出f(x)的導函數即可得到a與b的值,然后把Pn(n,Sn)代入到f(x)中得到Sn=-n2+7n,利用an=Sn-Sn-1得到通項公式,令an=-2n+8≥0得到n的范圍即可求出Sn的最大值;
(II)由題知,數列{bn}是首項為8,公比是的等比數列,表示出{nbn}的各項,利用錯位相減法求出{nbn}的前n項和即可.
解答:解:(I)∵f(x)=ax2+bx(a≠0),∴f'(x)=2ax+b
由f'(x)=-2x+7得:a=-1,b=7,所以f(x)=-x2+7x
又因為點Pn(n,Sn)(n∈N*)均在函數y=f(x)的圖象上,所以有Sn=-n2+7n
當n=1時,a1=S1=6
當n≥2時,an=Sn-Sn-1=-2n+8,∴an=-2n+8(n∈N*
令an=-2n+8≥0得n≤4,∴當n=3或n=4時,Sn取得最大值12
綜上,an=-2n+8(n∈N*),當n=3或n=4時,Sn取得最大值12

(II)由題意得
所以,即數列{bn}是首項為8,公比是的等比數列,
故{nbn}的前n項和Tn=1×23+2×22++n×2-n+4

所以①-②得:

點評:考查學生利用做差法求等差數列通項公式的能力,以及掌握用錯項相減的方法求數列前n項的和.考查學生求導數的能力,以及靈活運用等比數列的前n項和公式來解決問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 人人艹人人 | 国产免费黄色 | 国产麻豆一区二区 | 99一区二区三区 | 欧美色噜噜| 日韩欧美三区 | 久久激情视频 | 国产又粗又猛又爽又黄 | 色婷婷久久综合 | 亚洲欧美另类在线观看 | 欧美日韩小视频 | 欧美激情xxx | 美国一级大黄一片免费中文 | 亚洲一级特黄 | 二区三区在线观看 | 国产欧美激情 | 在线黄色av | 欧美一级片在线 | 国产精品一区二 | 99热国产| 在线视频99 | 国产精品成人免费一区久久羞羞 | 精品久久一区二区 | 精品久久久久久 | 高清一级片 | 欧美在线小视频 | 色激情网 | 国产91在线看| 欧美高清在线 | 岛国av免费观看 | 一级片在线视频 | 欧美mv日韩mv国产网站 | 在线亚洲欧美 | 亚洲欧美日韩国产 | 欧美精品www| 一区二区三区精品 | 这里只有精品视频在线观看 | 日韩在线视频一区 | 91精品久久久久久 | 91最新网址 | 四虎成人av |