【題目】已知函數.
(1)判斷并證明函數的奇偶性;
(2)判斷當時函數
的單調性,并用定義證明;
(3)若定義域為
,解不等式
.
【答案】(1)奇函數(2)增函數(3)
【解析】試題分析:(1)判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。(2)利函數單調性定義證明單調性,按假設,作差,化簡,判斷,下結論五個步驟。(3)由(1)(2)奇函數在(-1,1)為單調函數,
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數的單調性及定義(-1,1)求解得x范圍。
試題解析:(1)函數為奇函數.證明如下:
定義域為
又
為奇函數
(2)函數在(-1,1)為單調函數.證明如下:
任取,則
,
即
故在(-1,1)上為增函數
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。
(2)單調性:利函數單調性定義證明單調性,按假設,作差,化簡,定號,下結論五個步驟。
【題型】解答題
【結束】
22
【題目】已知函數.
(1)若的定義域和值域均是
,求實數
的值;
(2)若在區間
上是減函數,且對任意的
,都有
,求實數
的取值范圍;
(3)若,且對任意的
,都存在
,使得
成立,求實數
的取值范圍.
【答案】(1)(2)
(3)
【解析】試題分析:(1)先利用二次函數的性質確定函數的單調遞減區間為
,故
在
單調遞減,然后由定義域與值域列出等式關系,從而求解即可;(2)由(1)可知
,初步確定
的取值范圍
,然后確定
時函數
的最大值
,從中求解不等式組
即可;(3)將“對任意的
,都存在
,使得
成立”轉化為
時,
的值域包含了
在
的值域,然后進行分別求
在
的值域,從集合間的包含關系即可求出
的取值范圍.
試題解析:(1)∵
∴在
上單調遞減,又
,∴
在
上單調遞減,
∴,∴
,∴
4分
(2)∵在區間
上是減函數,∴
,∴
∴,
∴時,
又∵對任意的,都有
,
∴,即
,也就是
綜上可知8分
(3)∵在
上遞增,
在
上遞減,
當時,
,
∵對任意的,都存在
,使得
成立
∴
∴,所以
13分
科目:高中數學 來源: 題型:
【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數m的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)由直線的斜率為
,可得所求直線的斜率為
,代入點斜式方程,可得答案;(2)直線
與兩坐標軸的交點分別為
,則所圍成的三角形的面積為
,根據直線
與兩坐標軸所圍成的三角形的面積為大于
,構造不等式,解得答案.
試題解析:(1)與直線l垂直的直線的斜率為-2,
因為點(2,3)在該直線上,所以所求直線方程為y-3=-2(x-2),
故所求的直線方程為2x+y-7=0.
(2) 直線l與兩坐標軸的交點分別為(-2m+2,0),(0,m-1),
則所圍成的三角形的面積為×|-2m+2|×|m-1|.
由題意可知×|-2m+2|×|m-1|>4,化簡得(m-1)2>4,
解得m>3或m<-1,
所以實數m的取值范圍是(-∞,-1)∪(3,+∞).
【方法點睛】本題主要考查直線的方程,兩條直線平行與斜率的關系,屬于簡單題. 對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1) ;(2)
,這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.
【題型】解答題
【結束】
18
【題目】在平面直角坐標系中,已知經過原點O的直線
與圓
交于
兩點。
(1)若直線與圓
相切,切點為B,求直線
的方程;
(2)若,求直線
的方程;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】口袋中裝有2個白球和n(n≥2,n N*)個紅球.每次從袋中摸出2個球(每次摸球后把這2個球放回口袋中),若摸出的2個球顏色相同則為中獎,否則為不中獎.
(I)用含n的代數式表示1次摸球中獎的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎的概率;
(III)記3次摸球中恰有1次中獎的概率為f(p),當f(p)取得最大值時,求n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數y=cos2x的圖象向左平移 個單位,得到函數y=f(x)cosx的圖象,則f(x)的表達式可以是( )
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數的最小值為3,且
.
求函數的解析式;
(2)若偶函數(其中
),那么,
在區間
上是否存在零點?請說明理由.
【答案】(1)(2)存在零點
【解析】試題分析:(1)待定系數法,己知函數類型為二次函數,又知f(-1)=f(3),所以對稱軸是x=1,且函數最小值f(1)=3,所設函數,且
,代入f(-1)=11,可解a。
(2)由題意可得,代入
,由
和根的存在性定理,
在區間(1,2)上存在零點。
試題解析:(1)因為是二次函數,且
所以二次函數圖像的對稱軸為.
又的最小值為3,所以可設
,且
由,得
所以
(2)由(1)可得,
因為,
所以在區間(1,2)上存在零點.
【點睛】
(1)對于求己知類型函數的的解析式,常用待定系數法,由于二次函數的表達式形式比較多,有一般式,兩點式,頂點式,由本題所給條件知道對稱軸與頂點坐標,所以設頂點式。
(2)對于判定函數在否存在零點問題,一般解決此類問題的三步曲是:①先通過觀察函數圖象再估算出根所在的區間;②根據方程根的存在性定理證明根是存在的;③最后根據函數的性質證明根是唯一的.本題給了區間,可直接用根的存在性定理。
【題型】解答題
【結束】
20
【題目】《中華人民共和國個人所得稅》規定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月稅所得額,此項稅款按下表分段累計計算:
全月應納稅所得額 | 稅率 |
不超過1500元的部分 | |
超過1500元至4500元的部分 | |
超過4500元至9000元的部分 |
(1)已知張先生的月工資,薪金所得為10000元,問他當月應繳納多少個人所得稅?
(2)設王先生的月工資,薪金所得為,當月應繳納個人所得稅為
元,寫出
與
的函數關系式;
(3)已知王先生一月份應繳納個人所得稅為303元,那么他當月的工資、薪金所得為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷并證明函數的奇偶性;
(2)判斷當時函數
的單調性,并用定義證明;
(3)若定義域為
,解不等式
.
【答案】(1)奇函數(2)增函數(3)
【解析】試題分析:(1)判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。(2)利函數單調性定義證明單調性,按假設,作差,化簡,判斷,下結論五個步驟。(3)由(1)(2)奇函數在(-1,1)為單調函數,
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數的單調性及定義(-1,1)求解得x范圍。
試題解析:(1)函數為奇函數.證明如下:
定義域為
又
為奇函數
(2)函數在(-1,1)為單調函數.證明如下:
任取,則
,
即
故在(-1,1)上為增函數
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數的奇偶性,首先要確定函數的定義域是否關于原點對稱,再判斷f(-x)與f(x)的關系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數,如果f(-x)=-f(x)就是奇函數,否則是非奇非偶函數。
(2)單調性:利函數單調性定義證明單調性,按假設,作差,化簡,定號,下結論五個步驟。
【題型】解答題
【結束】
22
【題目】已知函數.
(1)若的定義域和值域均是
,求實數
的值;
(2)若在區間
上是減函數,且對任意的
,都有
,求實數
的取值范圍;
(3)若,且對任意的
,都存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】王先生家住 A 小區,他工作在 B 科技園區,從家開車到公司上班路上有 L1 , L2 兩條路線(如圖),L1 路線上有 A1 , A2 , A3 三個路口,各路口遇到紅燈的概率均為 ;L2 路線上有 B1 , B2 兩個路.各路口遇到紅燈的概率依次為
,
.若走 L1 路線,王先生最多遇到 1 次紅燈的概率為;若走 L2 路線,王先生遇到紅燈次數 X 的數學期望為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知A,B,C為直角坐標系xOy中的三個定點
(Ⅰ)若點D為□ABCD的第四個頂點,求||;
(Ⅱ)若點P在直線OC上,且·
=4,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com