日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax-1的圖象經過點(3,4),其中a>0,a≠1.且函數f(x)=(logax)2-logax3+2,x∈[
1
4
,2]
的值域為B. 
(1)求集合B;
(2)若方程a(
32
)x+b=0(a>0)
在B上有解,求
b
a
的取值范圍.
分析:(1)根據函數y=f(x)的圖象經過P(3,4),求出a的值,再換元,利用配方法,可求集合B;
(2)令g(x)=a(
32
)
x
+b
,方程a(
32
)x+b=0(a>0)
在B上有解,等價于g(0)g(12)<0,由此可求
b
a
的取值范圍.
解答:解:(1)∵函數y=f(x)的圖象經過P(3,4),∴a3-1=4,即a2=4,
又a>0,∴a=2,
f(x)=(log2x)2-log2x3+2,x∈[
1
4
,2]

令t=log2x,則t∈[-2,1],y=t2-3t+2=(t-
3
2
2-
1
4

∵t∈[-2,1],∴y∈[0,12],
∴B=[0,12];
(2)令g(x)=a(
32
)
x
+b

∵方程a(
32
)x+b=0(a>0)
在B上有解,
∴g(0)g(12)<0
∴(a+b)(16a+b)<0
解得-16<
b
a
<-1.
點評:本題考查函數的值域,考查方程有解問題,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本视频免费 | 青草精品| 亚洲欧美中文字幕 | 久久精品免费 | 伊人av在线| 免费黄色毛片 | 婷婷精品在线 | 99精品久久久久久 | 成人激情视频 | 成人精品视频在线观看 | 九九热在线免费视频 | 91久久综合亚洲鲁鲁五月天 | 中文字幕日韩欧美一区二区三区 | 黄色在线免费观看 | 2018国产精品| 综合色成人 | 日韩欧美国产一区二区 | 视频一区二区三区中文字幕 | 国产精品综合一区二区 | 欧美大片一区二区 | 久久成人精品视频 | 青青国产在线 | 国产精品乱码一区二区三区 | 亚洲美女性视频 | 本道综合精品 | 午夜高清视频 | 91偷拍精品一区二区三区 | 久久久久久久久久久免费视频 | 国精产品一区二区三区 | 91精品一区 | 国产特黄大片aaaaa毛片 | 久久久久国 | 91精品国产99| 精品国产精品三级精品av网址 | 午夜影院在线观看视频 | 精品一区久久 | 在线观看一区 | 久久国产综合 | 成人黄色小视频 | 中文字幕一区日韩精品欧美 | 欧美激情视频一区二区三区在线播放 |