【題目】如圖,在平面直角坐標系xOy中,橢圓C: =1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當點Q坐標為(0,1)時,點R坐標為(0,2)
(1)求橢圓C的標準方程;
(2)求證: 為定值;
(3)求證:過點R且與直線QB垂直的直線經過定點,并求出該定點的坐標.
【答案】
(1)解:由題意可得A(﹣a,0),B(a,0),
當點Q坐標為(0,1)時,點R坐標為(0,2),
即有kPA= ,直線PA:y=
x+1,
kPB=﹣ ,直線PA:y=﹣
x+2,
解得交點P( ,
),
代入橢圓方程可得 +
=1,
解得a= ,
則橢圓C的標準方程為 =1
(2)證明:設Q(0,s),R(0,t),
由橢圓的方程可得A(﹣ ,0),B(
,0),
即有直線PA:y= x+s,直線PB的方程為y=﹣
x+t,
解得交點P( ,
),
代入橢圓方程可得 +
=1,
化簡可得st=2,
即有 =st=2為定值;
(3)證明:由(2)可得st=2,即t= ,
直線QB的斜率為k=﹣ ,
即有過點R且與直線QB垂直的直線方程為y= x+t,
即為y= ,令x=﹣
,可得y=0,
則過點R且與直線QB垂直的直線經過定點,坐標為(﹣ ,0)
【解析】(1)求得A,B的坐標,直線PA,PB的方程,求交點P,代入橢圓方程,解方程,可得a,進而得到橢圓方程;(2)設Q(0,s),R(0,t),求得直線PA,PB的方程,求交點P,代入橢圓方程,化簡整理可得st=2,再由向量的數量積的坐標表示可得定值;(3)求得QB的斜率,運用兩直線垂直的條件:斜率之積為﹣1,求得垂線的方程,由st=2,代入,結合直線恒過定點的求法,可得定點.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin2( +x)﹣
cos2x﹣1,x∈R,若函數k(x)=f(x+a)的圖象關于點(﹣
,0)對稱,且α∈(0,π),則α=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構成的區域,E是滿足不等式組 的點(x,y)構成的區域,向D中隨機投一點,則所投的點落在E中的概率是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側有A,B兩個蔬菜基地,江的另一側點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉站D,A,B兩處的蔬菜運抵D處后,再統一經過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發的運輸費為每千米2元,從B處出發的運輸費為每千米1元,貨輪的運輸費為每千米3元.
(1)設∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數S(α),并寫出自變量的取值范圍;
(2)問中轉站D建在何處時,運輸總費用S最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設x∈R,y∈R,若復數(x2+y2-4)+(x-y)i是純虛數,則點(x,y)的軌跡是( )
A. 以原點為圓心,以2為半徑的圓
B. 兩個點,其坐標為(2,2),(-2,-2)
C. 以原點為圓心,以2為半徑的圓和過原點的一條直線
D. 以原點為圓心,以2為半徑的圓,并且除去兩點(,
),(-
,-
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知恒等式(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n .
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n﹣2a2n的值;
(2)當n≥6時,求證: a2+2A
a3+…+22n﹣2
a2n<49n﹣2 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=xex﹣asinxcosx(a∈R,其中e是自然對數的底數).
(1)當a=0時,求f(x)的極值;
(2)若對于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數a,使得函數f(x)在區間 上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在圓上任取一點
,過點
作
軸的垂線段
,
為垂足.
,當點
在圓上運動時,
(1)求點的軌跡
的方程;
(2) 若,直線
交曲線
于
、
兩點(點
、
與點
不重合),且滿足
.
為坐標原點,點
滿足
,證明直線
過定點,并求直線
的斜率的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com