日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知一列橢圓數學公式.n=1,2….若橢圓Cn上有一點Pn,使Pn到右準線ln的距離dn是{pnFn}與{PnGn}的等差中項,其中Fn、Gn分別是Cn的左、右焦點.
(I)試證:數學公式(n≥1);
(II)取數學公式,并用Sn表示△PnFnGn的面積,試證:S1<S2且Sn>Sn+1(n≥3).

證明:(I)由題設及橢圓的幾何性質有2dn={PnFn}+{PnGn}=2,故dn=1.
,則右準線方程為
因此,由題意dn應滿足
,解之得:
.從而對任意

(II)設點P的坐標為(xn,yn),則由dn=1及橢圓方程易知
=.因{FnGn}=2Gn
故△PnFnGn的面積為Sn=Gn{y4},
從而
令f(c)=-2c3+c2+2c-1.由f′(c)=-6c2+2c+2=0.
得兩根.從而易知函數f(c)在內是增函數.
而在內是減函數.
現在由題設取
是增數列.
又易知
故由前已證,知S1<S2,且Sn>Sn+1(n≥3)
分析:(I)由題設及橢圓的幾何性質有2dn={PnFn}+{PnGn}=2,故dn=4.設,則右準線方程為.由題設條件能推出.即.從而證出對任意
(II)設點P的坐標為(xn,yn),由題設條件能夠推出{FnGn}=2Gn,△PnFnGn的面積為Sn=Gn{y4},由此入手能夠證出S1<S2,且Sn>Sn+1(n≥3).
點評:本題綜合考查橢圓、數列和不等式的知識,難度較大,解題時要綜合考慮,恰當地選取公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知一列橢圓cnx2+
y2
b
2
n
=1,0<bn<1
.n=1,2….若橢圓Cn上有一點Pn,使Pn到右準線ln的距離dn是{pnFn}與{PnGn}的等差中項,其中Fn、Gn分別是Cn的左、右焦點.
(I)試證:bn
3
2
(n≥1);
(II)取bn=
2n+3
n+2
,并用Sn表示△PnFnGn的面積,試證:S1<S2且Sn>Sn+1(n≥3).

查看答案和解析>>

科目:高中數學 來源:重慶市高考真題 題型:證明題

已知一列橢圓Cn, 0<bn<1,n=1,2,…,若橢圓Cn上有一點Pn,使Pn到右準線ln的距離dn是|PnFn|與|PnGn|的等差中項,其中Fn、Gn分別是Cn的左、右焦點,
(Ⅰ)試證:(n≥1);
(Ⅱ)取,并用Sn表示△PnFnGn的面積,試證:S1<S2且Sn>Sn+1(n≥3)。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一列橢圓Cn:x2­+=1. 0<bn<1,n=1,2..若橢圓C上有一點Pn使Pn到右準線n的距離d.是|PnFn|與|PnCn|的等差中項,其中FnCn分別是Cn的左、右焦點.

(Ⅰ)試證:bn         (n≥1);

(Ⅱ)取bn,并用SA表示PnFnGn的面積,試證:S1S1且Sn<Sn+3  (n≥3).

查看答案和解析>>

科目:高中數學 來源:2006年重慶市高考數學試卷(理科)(解析版) 題型:解答題

已知一列橢圓.n=1,2….若橢圓Cn上有一點Pn,使Pn到右準線ln的距離dn是{pnFn}與{PnGn}的等差中項,其中Fn、Gn分別是Cn的左、右焦點.
(I)試證:(n≥1);
(II)取,并用Sn表示△PnFnGn的面積,試證:S1<S2且Sn>Sn+1(n≥3).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区在线视频 | 成人免费视频网站在线看 | 久久之久久 | 精品国产一区二区三区久久影院 | 中文字幕日韩一区 | 久久成 | 中文字幕在线精品 | 亚洲cb精品一区二区三区 | 国产精品成人网 | 91精品国产入 | 精品中文字幕在线观看 | 国产伦精品一区二区 | 中文字幕亚洲精品在线观看 | 性一级录像片片视频免费看 | 七七婷婷婷婷精品国产 | 国产h视频在线观看 | 这里有精品在线视频 | 国产精品久久久久久久午夜片 | 日本在线观看一区二区 | 国产福利精品一区二区三区 | 新91在线视频 | 日韩视频精品在线 | 久久久久久久一区二区三区 | 久久99精品久久久久久国产越南 | 美女吊逼| 欧美成人一区二免费视频软件 | 亚洲wuma | 一级片免费在线观看 | 激情久久久 | 青青草日韩| 国产精品资源在线 | 日本黄色片在线观看 | 黄片毛片免费看 | 久久成人国产精品入口 | 国产精品视频久久 | 99日韩 | 欧美在线视频一区 | 五月婷婷色 | 欧美有码在线观看 | 欧美日影院| 色精品视频 |