日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面的中點(diǎn).

(Ⅰ)求證://平面

(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

 

【答案】

(1)詳見解析;(2)存在,

【解析】

試題分析:(1)要 證明//平面,只需在平面內(nèi)找一條直線與平行,連接于點(diǎn),則的中位線,所以,則//平面;(2)(方法一:)先假設(shè)滿足條件的點(diǎn)存在,由已知的垂直關(guān)系,找到二面角的平面角,然后在中計(jì)算,并判斷是否小于1;(方法二:)找三條兩兩垂直相交的直線,建立空間直角坐標(biāo)系,設(shè)點(diǎn)的坐標(biāo),并分別表示相關(guān)點(diǎn)的坐標(biāo),分別求兩個(gè) 半平面的法向量,再利用空間向量的夾角公式列式,確定點(diǎn)的位置,并判斷其是否在線段上.

試題解析:(1)連接,設(shè)和交于點(diǎn),連接,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032504333520973516/SYS201403250438066073594484_DA.files/image018.png">∥==,所以四邊形是平行四邊形,中點(diǎn),又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032504333520973516/SYS201403250438066073594484_DA.files/image022.png">是中點(diǎn),所以,又平面平面,所以//平面

(2)假設(shè)在線段上存在點(diǎn),使二面角的大小為.

(解法一)延長(zhǎng)交于點(diǎn),過點(diǎn),連接,因?yàn)樗倪呅?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032504333520973516/SYS201403250438066073594484_DA.files/image036.png">是矩形,平面⊥平面,所以⊥平面,又,所以,則,則就是二面角的平面角,則=中,,則,所以=,又在中,,故在線段上存在點(diǎn),使二面角的大小為,此時(shí)的長(zhǎng)為.

(解法二)由于四邊形是菱形,的中點(diǎn),,所以是等邊三角形,則,有因?yàn)樗倪呅?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032504333520973516/SYS201403250438066073594484_DA.files/image036.png">是矩形,平面⊥平面,所以,如圖建立空間直角坐標(biāo)系,設(shè)平面的法向量為,則,得,令,所以,又平面的法向量,解得

故在線段上存在點(diǎn),使二面角的大小為,此時(shí)的長(zhǎng)為.

考點(diǎn):1、線面平行的判定;2、面面垂直的性質(zhì)定理;3、二面角的求法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點(diǎn).
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點(diǎn)P,使得∠CPD最大?若存在,請(qǐng)求出∠CPD的正切值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段ED上是否存在點(diǎn)Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點(diǎn). 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 日韩欧美国产精品一区二区三区 | 亚洲欧美日韩另类精品一区二区三区 | 精品国产一区二区三区久久久蜜月 | 久久久精彩视频 | 欧美 日韩 亚洲 一区 | 直接在线观看的三级网址 | 在线观看成人网 | 成人一区二区av | 91精品国产欧美一区二区成人 | 色综合天天天天做夜夜夜夜做 | 日韩在线免费观看视频 | 高潮一级片 | 91视频国产区 | 亚洲天堂免费 | 99久久99久久精品国产片果冻 | 91久久久久 | 久在线 | 亚洲精品久久 | 亚洲444kkkk在线观看最新 | 农村妇女毛片精品久久久 | 日韩天堂 | 国产综合精品 | 丝袜久久 | 国产视频精品自拍 | 日本在线观看 | 丁香婷婷综合激情五月色 | 中文字幕 视频一区 | 成人在线视频网址 | 亚洲电影一区二区 | 在线观看免费毛片视频 | 免费黄色在线观看 | 91hd精品少妇 | 亚洲 欧美 精品 | 欧美日韩一区二区三区在线观看 | 成人久久久精品国产乱码一区二区 | 一区二区三区四区精品 | 91精品国产色综合久久不卡98口 | 国产91九色| 国产一区二区三区在线免费观看 | 日韩中文一区 | 日日爱886|