分析:先看函數(shù)的定義域是否關(guān)于原點對稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷.
解答:解:(1)對于函數(shù)f(x)=x
4+2x
2 ,由于f(-x)=(-x)
4+2(-x)
2=x
4+2x
2 =f(x),故函數(shù)為偶函數(shù).
(2)對于函數(shù)f(x)=x
3+
,由于f(-x)=(-x)
3+
=-(x
3+
)=-f(x),故函數(shù)為奇函數(shù).
(3)對于函數(shù)f(x)=
+,由于f(-x)=
+
=f(x),故函數(shù)為偶函數(shù).
(4)對于函數(shù)f(x)=
,當(dāng)x>0時,-x<0,f(-x)=(-x)
3+3(-x)
2-1=-x
3+3x
2-1=-(x
3-3x
2+1)=-f(x).
同理可得,當(dāng)x<0時,-x>0,f(-x)=(-x)
3-3(-x)
2+1=-x
3-3x
2+1=-(x
3+3x
2-1)=-f(x),
故函數(shù)f(x)為偶函數(shù).
點評:本題主要考查函數(shù)的奇偶性的判斷方法,先看函數(shù)的定義域是否關(guān)于原點對稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷,屬于中檔題.