日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知a>0,b>0,a+b=1,則y=
1
a
+
4
b
的最小值是(  )
分析:利用題設中的等式,把y的表達式轉化成(a+b)(
1
a
+
4
b
)展開后,利用基本不等式求得y的最小值.
解答:解:∵a+b=1,
∴y=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b
≥5+2
b
a
4a
b
=9,
當且僅當
b
a
=
4a
b
,即b=2a時等號成立.
故選:C.
點評:本題主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原則.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)在平面直角坐標系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數)與直線l:
x=1+2t
y=1-t
(t為參數)是否有公共點,并證明你的結論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數學 來源:松江區二模 題型:解答題

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩快播电影网 | 成人精品在线播放 | 精品一级毛片 | a级毛片久久 | 中文字幕视频在线播放 | 久久99久久精品视频 | 精一区二区 | 亚洲男人天堂2023 | 日韩免费在线观看视频 | 91免费看电影 | 天天干人人干 | 日韩精品一区二区三区在线 | 国产成人免费视频网站视频社区 | 亚洲视频一区二区在线 | 欧美日韩二区三区 | 特级黄一级播放 | 国产精品一区二区三区麻豆 | 亚洲v欧美| 一级毛片视频 | 欧美成人午夜精品久久久 | 欧美.com| 精品亚洲永久免费精品 | 国产福利在线免费 | 欧美精品三区 | 日韩视频久久 | 日韩欧美国产一区二区 | 黄色影片网址 | 狠狠躁日日躁夜夜躁东南亚 | 久久久国产视频 | 97人人做人人人难人人做 | 久久国产视频网 | 欧美日韩成人一区 | 久久免费视频国产 | 逼逼网| 国产亚洲一区二区三区在线观看 | 国产成人久久精品一区二区三区 | 久久亚洲国产精品日日av夜夜 | 国产精品一区二区三区在线 | 亚洲精品一区二区三区在线 | 欧美色图 | 成年人精品视频在线观看 |