【題目】將函數f(x)=2cos2x的圖象向右平移 個單位后得到函數g(x)的圖象,若函數g(x)在區間[0,
]和[2a,
]上均單調遞增,則實數a的取值范圍是( )
A.[ ,
]
B.[ ,
]
C.[ ,
]
D.[ ,
]
科目:高中數學 來源: 題型:
【題目】設,
,若
對任意
成立,則下列命題中正確的命題個數是( )
(1)
(2)
(3)不具有奇偶性
(4)的單調增區間是
(5)可能存在經過點的直線與函數的圖象不相交
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若曲線在
處的切線與直線
平行,求實數
的值;
(Ⅱ)若函數在定義域上為增函數,求實數
的取值范圍;
(Ⅲ)若有兩個極值點
,且
,
,若不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設某士兵遠程射擊一個易爆目標,射擊一次擊中目標的概率為,三次射中目標或連續兩次射中目標,該目標爆炸,停止射擊,否則就一直獨立地射擊至子彈用完.現有5發子彈,設耗用子彈數為隨機變量X.
(1)若該士兵射擊兩次,求至少射中一次目標的概率;
(2)求隨機變量X的概率分布與數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇
,要求
點在
上,
點在
上,且對角線
過
點,已知
米,
米.
(1)要使矩形的面積大于
平方米,則
的長應在什么范圍內?
(2)當的長度是多少時,矩形花壇
的面積最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知表1是某年部分日期的天安門廣場升旗時刻表.
表1:某年部分日期的天安門廣場升旗時刻表
將表1中的升旗時刻化為分數后作為樣本數據(如:可化為
).
(Ⅰ)請補充完成下面的頻率分布表及頻率分布直方圖;
|
(Ⅱ)若甲學校從上表日期中隨機選擇一天觀看升旗.試估計甲學校觀看升旗的時刻早于6:00的概率;
(Ⅲ)若甲,乙兩個學校各自從表1中五月、六月的日期中隨機選擇一天觀看升旗, 求兩校觀看升旗的時刻均不早于5:00的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知邊長為的正
的頂點
在平面
內,頂點
,
在平面
外的同一側,點
,
分別為
,
在平面
內的投影,設
,直線
與平面
所成的角為
.若
是以角
為直角的直角三角形,則
的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市政府為了引導居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數據按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設用抽到的100戶居民月用水量作為樣本估計全市的居民用水情況.
( i)現從全市居民中依次隨機抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過12噸的概率;
(ⅱ)試估計全市居民用水價格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com