【題目】已知函數(shù)
若曲線在點(diǎn)
處的切線與直線
垂直,求實數(shù)
的值;
(Ⅱ)討論函數(shù) 的單調(diào)性;
(Ⅲ)當(dāng) 時,記函數(shù)
的最小值為
,求證:
;
【答案】(1) 或
.
(2) 時,
在
上單調(diào)遞增,在
上單調(diào)遞減; 當(dāng)
時,
在
上單調(diào)遞增,在
上單調(diào)遞減.
(3)證明見解析.
【解析】分析:(Ⅰ)求出,根據(jù)
可求得實數(shù)
的值;(Ⅱ)求出
,分兩種情況討論
的范圍,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(Ⅲ)由(Ⅱ)可知,當(dāng)
時,函數(shù)
的最小值
,故
,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)
時,
,從而可得結(jié)果.
詳解:(Ⅰ)由已知可知的定義域為
,
根據(jù)題意可得,
或
(Ⅱ)
①時,由
可得
由可得
在
上單調(diào)遞增,在
上單調(diào)遞減
②當(dāng)時,
由可得
由可得
在
上單調(diào)遞增,在
上單調(diào)遞減
(Ⅲ)由(Ⅱ)可知,當(dāng)時,函數(shù)
的最小值
故
則
令可得
當(dāng)變化時,
的變化情況如表:
- | 0 | - | |
增 | 極大值 | 減 |
是
在
上的唯一的極大值,從而是
的最大值點(diǎn),
當(dāng)時,
時,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x∈[1,2], ﹣lnx﹣a≥0,命題q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命題“p或q”是真命題,命題“p且q”是假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R為實數(shù)集.
(1)當(dāng)t=4時,求A∪B及A∩RB;
(2)若A∪B=A,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,函數(shù)
的圖象在點(diǎn)
處的切線平行于
軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)
的圖象交于兩點(diǎn)
,
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某算法的算法框圖如圖所示,若將輸出的(x,y)值依次記為(x1 , y1),(x2 , y2),…,(xn , yn),…,則程序結(jié)束時,共輸出(x,y)的組數(shù)為( )
A.1006
B.1007
C.1008
D.1009
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下.為了了解同學(xué)對新推出的四款套餐的評價,對每位同學(xué)都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下面表格所示:
滿意 | 一般 | 不滿意 | |
A套餐 | 50% | 25% | 25% |
B套餐 | 80% | 0 | 20% |
C套餐 | 50% | 50% | 0 |
D套餐 | 40% | 20% | 40% |
(Ⅰ)若同學(xué)甲選擇的是A款套餐,求甲的調(diào)查問卷被選中的概率;
(Ⅱ)若想從調(diào)查問卷被選中且填寫不滿意的同學(xué)中再選出2人進(jìn)行面談,求這兩人中至少有一人選擇的是D款套餐的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線上,且與直線
相切于點(diǎn)
(1)求圓C的方程;
(2)是否存在過點(diǎn)的直線
與圓C交于
兩點(diǎn),且
的面積為
(O為坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)設(shè)不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次抽樣調(diào)查中測得樣本的5個樣本點(diǎn),數(shù)值如下表:
| 0.25 | 0.5 | 1 | 2 | 4 |
16 | 12 | 5 | 2 | 1 |
(1)根據(jù)散點(diǎn)圖判斷,哪一個適宜作為
關(guān)于
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果試建立與
之間的回歸方程.(注意
或
計算結(jié)果保留整數(shù))
(3)由(2)中所得設(shè)z=+
且
,試求z的最小值。
參考數(shù)據(jù)及公式如下:
,
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com