日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中點,F是C1C上一點,且CF=2a.
(1)求證:B1F⊥平面ADF;
(2)求三棱錐D-AB1F的體積;
(3)試在AA1上找一點E,使得BE∥平面ADF.

【答案】分析:(1)證明直線與平面垂直,關鍵要找到兩條相交直線與之都垂直,通過證明AD⊥平面BCC1B1得AD⊥B1F,然后在矩形BCC1B1中通過證明Rt△DCF≌Rt△FC1B1得B1F⊥FD,問題從而得證.
(2)利用等體積法,將要求的三棱錐D-AB1F的體積轉化為高和底面都已知的三棱錐A-B1DF體積來求.
(3)本問是個探究性問題,通過線段的長度關系和平行關系探討線面平行.
解答:(1)證明:∵AB=AC,D為BC中點∴AD⊥BC,
又直三棱柱中:BB1⊥底面ABC,AD?底面ABC,
∴AD⊥BB1
∴AD⊥平面BCC1B1
∵B1F?平面BCC1B1
∴AD⊥B1F.
在矩形BCC1B1中:C1F=CD=a,CF=C1B1=2a
∴Rt△DCF≌Rt△FC1B1
∴∠CFD=∠C1B1F
∴∠B1FD=90°,即B1F⊥FD,
∵AD∩FD=D,
∴B1F⊥平面AFD;
(2)解:∵AD⊥平面BCC1B1

=
(3)當AE=2a時,BE∥平面ADF.
證明:連EF,EC,設EC∩AF=M,連DM,
∵AE=CF=2a
∴AEFC為矩形,
∴M為EC中點,
∵D為BC中點,
∴MD∥BE,
∵MD?平面ADF,BE?平面ADF
∴BE∥平面ADF.
點評:本小題主要考查空間線面關系、幾何體的體積等知識,考查數形結合、化歸與轉化的數學思想方法,以及空間想象能力、推理論證能力和運算求解能力,是個中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點.
(Ⅰ)求證:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,則AB′與側面AC′所成角的大小為
30°
30°

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個動點E,F,且EF=a (a為常數).
(Ⅰ)在平面ABC內確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在直三棱柱ABC-A′B′C′中,點D是BC的中點,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲過點A′作一截面與平面AC'D平行,問應當怎樣畫線,寫出作法,并說明理由;
(2)求異面直線BA′與 C′D所成角的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品国产31久久久久久 | 色综合天天综合网国产成人网 | 天堂va蜜桃一区二区三区 | 麻豆高清免费国产一区 | 亚洲成人精品一区二区三区 | 久久精av | 久久亚洲国产 | 中文字幕日韩欧美 | 国产精品久久久久久中文字 | 久久精品中文字幕 | 精品日韩欧美一区二区在线播放 | 日本久久精品电影 | 日韩在线二区 | 欧美日韩国产精品一区二区 | 91亚洲精品一区 | 久久久99日产 | 午夜精品偷拍 | 精品成人一区二区 | 在线色国产 | 一区二区三区在线 | 一区二区三区视频免费观看 | 色综合天天天天做夜夜夜夜做 | 偷拍亚洲视频 | 国产精品夜夜春夜夜爽久久电影 | av在线精品 | 精品久久久久久久 | 啪一啪av| 成人一区二区三区在线观看 | 91久久香蕉国产日韩欧美9色 | 国产偷自视频区视频 | 亚洲一级免费观看 | 黄色毛片在线看 | 亚洲免费在线视频 | 免费国产一区二区 | av日韩在线看 | 欧美a区| 国产精品国产三级国产aⅴ无密码 | 91免费版在线观看 | 久久久水蜜桃 | 蜜桃久久av| 久久久久久亚洲 |