日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax+xlnx的圖象在點x=e(e為自然對數的底數)處的切線斜率為3.
(Ⅰ)求實數a的值;
(Ⅱ)若函數g(x)=
f(x)
x
+
9
2(x+1)
-k
僅有一個零點,求實數k的取值范圍.
(Ⅲ)若f(x)>t(x-1)(t∈Z)對任意x>1恒成立,求t的最大值.
分析:(1)由已知得f′(x)=a+lnx+1,故f′(a)=3,由此能求出a.
(2)由g(x)=
x+xlnx
x
+
9
2(x+1)
-k
=1+lnx+
9
2(x+1)
-k(x>0)
,知g(x)=
1
x
-
9
2(x+1)2
=
(2x-1)(x-2)
2x(x+1)2
,(x>0),令g′(x)=0,解得x=
1
2
,或x=2,列表討論能求出k的范圍.
(3)由x+xlnx>t(x-1)在x>1時恒成立,即t<
x+xlnx-2
x-1
在x>1恒成立,令p(x)=
x +xlnx-2
x-1
 (x>1),p(x)=
x-lnx-2
(x-1)2
,由此能夠求出t的最大值.
解答:解:(1)由已知得f′(x)=a+lnx+1,
故f′(e)=3,
即a+lne+1=3,
∴a=1.
(2)∵g(x)=
x+xlnx
x
+
9
2(x+1)
-k

=1+lnx+
9
2(x+1)
-k(x>0)
,
g(x)=
1
x
-
9
2(x+1)2
=
(2x-1)(x-2)
2x(x+1)2
,(x>0)
令g′(x)=0,解得x=
1
2
,或x=2,
列表如下
 x  (0,
1
2
 
1
2
 (
1
2
,2
 2 (2,+∞) 
 g′(x) + -  0 +
 g(x)  極大值
4-ln2-k
  極小值
5
2
+ln2-k
由于x→0時,g(x)→-∞,x→+∞,g(x)→+∞,
要使g(x)僅有一個零點,則必須
4-ln2-k<0
5
2
+ln2-k<0
,或
5
2
+ln2-k>0
4-ln2-k>0
,
∴k>4-ln2,或k<
5
2
+ln2
,
∴k∈(-∞,
5
2
+ln2)∪(4-ln2,+∞)

(3)由x+xlnx>t(x-1)在x>1時恒成立,
即t<
x+xlnx-2
x-1
在x>1恒成立,
令p(x)=
x+xlnx
x-1
(x>1),p(x)=
x-lnx-2
(x-1)2
,
令h(x)=x-lnx-2,x>1,
h(x)=1-
1
x
=
x-1
x
>0
,
∴h(x)在(1,+∞)上單調增加,
∵h(3)=1-ln3<0,
h(4)=2-2ln2>0,
∴h(x)在(1,+∞)上在唯一實數根x0,且滿足x0∈(3,4),
當x∈(1,x0)時,h(x)<0,∴p(x)=
x-lnx-2
(x-1)2
<0
,
函數p(x)在(1,x0)上單調遞減,
當x∈(x0,+∞)時,h(x)>0,∴p(x)=
x-lnx-2
(x-1)2
>0

函數p(x)在(1,x0)上單調遞增,
p(x)min=p(x0)=
x0(1+lnx0)
x0-1
,
∵h(x0)=0,即x0-lnx0-2=0,
∴lnx0=x0-2.
p(x)min=p(x0)=
x0(1+lnx0)
x0-1
=x0∈(3,4),
∴t<p(x)min=p(x0)=
x0(1+lnx0)
x0-1
=x0∈(3,4),
故t的最大值為3.
點評:此題考查學生會利用導數求切線上過某點切線方程的斜率,會利用導函數的正負確定函數的單調區間,會利用導數研究函數的極值,掌握導數在最大值、最小值問題中的應用,是一道難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色网页大全 | 2021最新热播中文字幕-第1页-看片视频 亚洲第一男人天堂 | 国产在线日本 | 久久久久国产 | 精品国产欧美一区二区 | 中文字幕黄色 | 日本黄a三级三级三级 | 国产美女高潮一区二区三区 | 久久人人爽爽爽人久久久 | 日韩在线一区二区 | 免费国产视频 | 亚洲精品欧美视频 | 国产成人亚洲综合 | 久久久久久亚洲精品中文字幕 | 一级片在线观看网站 | 色综合久久久 | 国产综合久久 | 精品国产成人 | 国产在线专区 | 日韩精品免费一区二区在线观看 | 殴美一区| 91精品一区二区 | 国产高清精品一区 | 日韩性在线 | 亚洲精品在线视频 | 国产精品不卡视频 | www.日韩.com| 亚洲v日韩v综合v精品v | 少妇黄色 | 国产精品中文在线 | 国产一区精品 | 91精品国产色综合久久不卡蜜臀 | 97人人插| 欧美亚洲日本 | 亚洲一区高清 | 伊人激情网 | 色悠悠久久 | 亚洲国产成人精品女人 | 涩涩导航| 99中文字幕 | 国产精品日韩欧美一区二区三区 |