(15分)已知函數(
不同時為零的常數),導函數為
.
(Ⅰ)當時,若存在
使得
成立,求
的取值范圍;
(Ⅱ)求證:函數在
內至少有一個零點;
(Ⅲ)若函數為奇函數,且在
處的切線垂直于直線
,關于
的方程
在
上有且只有一個實數根,求實數
的取值范圍.
(1);(2)函數
在
內至少有一個零點;(3)
或
.
【解析】第一問利用當時,
=
=
,其對稱軸為直線
,
當 ,解得
,當
,
無解,
所以的的取值范圍為
第二問中,法二:,
,
.
由于不同時為零,所以
,故結論成立.
第三問中,)因為=
為奇函數,所以
, 所以
,
又在
處的切線垂直于直線
,所以
,即
.
因為 所以
在
上是増函數,在
上是減函數,由
解得
,結合圖像和極值點得到結論。
解:(1)當時,
=
=
,其對稱軸為直線
,
當 ,解得
,當
,
無解,
所以的的取值范圍為
.………………………………………………4分
(2)因為,
法一:當時,
適合題意………………………………………6分
當時,
,令
,則
,
令,因為
,
當時,
,所以
在
內有零點.
當時,
,所以
在(
內有零點.
因此,當時,
在
內至少有一個零點.
綜上可知,函數在
內至少有一個零點.……………………10分
法二:,
,
.
由于不同時為零,所以
,故結論成立.
(3)因為=
為奇函數,所以
, 所以
,
又在
處的切線垂直于直線
,所以
,即
.
因為 所以
在
上是増函數,在
上是減函數,由
解得
,如圖所示,
當
時,
,即
,解得
;
當時,
,解得
;
當時,顯然不成立;
當時,
,即
,
解得;
當時,
,故
.
所以所求的取值范圍是
或
.
科目:高中數學 來源: 題型:
a |
| ||
2 |
1 |
2 |
b |
1 |
2 |
| ||
2 |
a |
b |
x |
a |
b |
y |
a |
b |
x |
y |
查看答案和解析>>
科目:高中數學 來源:江蘇省期中題 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分16分)
已知函數是不同時為零的常數),其導函數為
。
當a=時,若存在
,使得
>成立,求b的取值范圍;
求證:函數y=d (-1,0)內至少存在一個零點;
若函數f(x)為奇函數,且在x=1處的切線垂直于在線x+2y-3=0, 關于x的方程在[-1,t](t>-1)上有且只有一個實數根,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
(本題滿分16分)
已知函數是不同時為零的常數),其導函數為
。
當a=時,若存在
,使得
>成立,求b的取值范圍;
求證:函數y=d (-1,0)內至少存在一個零點;
若函數f(x)為奇函數,且在x=1處的切線垂直于在線x+2y-3=0, 關于x的方程在[-1,t](t>-1)上有且只有一個實數根,求實數t的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com