日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
f(x)和g(x)都是定義在集合M上的函數,對于任意的x∈M,都有f(g(x))=g(f(x))成立,稱函數f(x)與g(x)在M上互為“H函數”.
(1)若函數f(x)=ax+b,g(x)=mx+n,f(x)與g(x)互為“H函數”,證明:f(n)=g(b)
(2)若集合M=[-2,2],函數f(x)=x2,g(x)=cosx,判斷函數f(x)與g(x)在M上是否互為“H函數”,并說明理由.
(3)函數f(x)=ax(a>0且a≠1),g(x)=x+1在集合M上互為“H函數”,求a的取值范圍及集合M.
【答案】分析:(1)由f(x)=ax+b,g(x)=mx+n,f(x)與g(x)互為“H函數”,知f(g(x))=g(f(x))成立.即ag(x)+b=mf(x)+n恒成立,由此能夠證明f(n)=g(b).
(2)假設函數f(x)與g(x)互為“H函數”,則對于任意的x∈M,f(g(x))=g(f(x))恒成立.即cosx2=cos2x,對于任意x∈[-2,2]恒成立,由此能推導出在集合M上,函數f(x)與g(x)不是互為“H函數”.
(3)由題意得,ax+1=ax+1(a>0且a≠1),變形得ax(a-1)=1,由于a>0且a≠1,由此能求出a的取值范圍及集合M.
解答:(1)證明:∵f(x)=ax+b,
g(x)=mx+n,f(x)與g(x)互為“H函數”,
∴對于?x∈R,f(g(x))=g(f(x))成立.
即ag(x)+b=mf(x)+n恒成立…(2分)
∴max+an+b=amx+mb+n,…(2分)
∴an+b=mb+n,
∴f(n)=g(b).…(1分)
(2)解:假設函數f(x)與g(x)互為“H函數”,
則對于任意的x∈Mf(g(x))=g(f(x))恒成立.
即cosx2=cos2x,對于任意x∈[-2,2]恒成立…(2分).
當x=0時,cos0=cos0=1.
不妨取x=1,則cos12=cos1,所以cos1≠cos21…(2分)
所以假設不成立,在集合M上,
函數f(x)與g(x)不是互為“H函數”…(1分).
(3)解:由題意得,ax+1=ax+1(a>0且a≠1)…(2分)
變形得,ax(a-1)=1,
由于a>0且a≠1
因為ax>0,所以,即a>1…(2分)
此時x=-loga(a-1),
集合M={x|x=-loga(a-1),a>1}…(2分)
點評:本題考查函數值相等的證明,考查兩個函數是否互為“H函數”的判斷,考查滿足條件的實數的取值范圍的求法,解題時要認真審題,注意等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、若函數f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在區間[m,n]上的兩個函數f(x)和g(x),如果對任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,則稱函數f(x)與g(x)在[m,n]上是“友好”的,否則稱“不友好”的.現在有兩個函數f(x)=loga(x-3a)與g(x)=loga
1x-a
(a>0,a≠1),給定區間[a+2,a+3].
(1)若f(x)與g(x)在區間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論函數f(x)與g(x)在區間[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•綿陽二模)對于具有相同定義域D的函數f(x)和g(x),若對任意的x∈D,都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在D上是“密切函數”.給出定義域均為D={x|1≤x≤3}的四組函數如下:
①f(x)=x2-x+1,g(x)=3x-2
②f(x)=x3+x,g(x)=3x2+x-1
③f(x)=log2(x+1),g(x)=3-x
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
其中,函數f(x)印g(x)在D上為“密切函數”的是
①④
①④

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 综合久久综合久久 | 欧美精品一区二 | 国产区视频 | 欧美成人一区二区三区片免费 | 97成人在线 | 在线视频日本 | 91视频观看 | 国产精品九九九 | 91成人免费在线视频 | 91精品久久 | 中文字幕第一页在线 | 色图综合| 国产高清无av久久 | 天天天天天天操 | 五月婷婷六月综合 | 艳妇荡乳豪妇荡淫 | 日本一本视频 | 中文字幕一区二区三区四区不卡 | 欧美激情自拍偷拍 | 亚洲一区二区三区高清 | 欧美一区不卡 | 91九色porny首页最多播放 | 欧美成人视屏 | 91精品国产高清一区二区三区 | 国产视频一视频二 | 99精品国产一区二区 | 国产乱码一二三区精品 | 91看片官网 | 免费观看特级毛片 | 日本免费不卡 | 精品久久久影院 | 精品国产一区二区三区久久影院 | 国产成人av一区二区 | 国产精品久久久久久亚洲毛片 | 欧美性生活免费观看 | 99成人| 中国特级黄色片 | 久久久久久高清 | 欧美日本韩国一区二区三区 | 屁屁影院在线观看 | 亚洲 欧美 日韩 在线 |