已知橢圓的右焦點為
,短軸的端點分別為
,且
.
(1)求橢圓的方程;
(2)過點且斜率為
的直線
交橢圓于
兩點,弦
的垂直平分線與
軸相交于點
.設弦
的中點為
,試求
的取值范圍.
(1);(2)
解析試題分析:(1)由橢圓的右焦點
,即
.又短軸的端點分別為
,且
,即可求出
,
的值.從而得到橢圓的方程.
(2)由(1)可得假設直線AB的方程聯立橢圓方程消去y即可得到一個關于x的二次方程,由韋達定理得到根與直線斜率k的關系式.寫出線段AB的中點坐標以及線段AB的垂直平分線的方程.即可得到點D的坐標.即可求得線段PD的長,根據弦長公式可得線段MN的長度,再通過最的求法即可得結論.
試題解析:(1)依題意不妨設,
,則
,
.
由,得
.
又因為,
解得.
所以橢圓的方程為
.
(2)依題意直線的方程為
.
由得
.
設,
,則
,
.
所以弦的中點為
.
所以.
直線的方程為
,
由,得
,則
,
所以.
所以.
又因為,所以
.
所以.
所以的取值范圍是
.
考點:1.向量的數量積.2.橢圓的性質.3.等價轉化的數學思想.4.運算能力.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)設A,B是橢圓C上的兩點,△AOB的面積為.若A、B兩點關于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果
=t
,求實數t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的右焦點為
,短軸的一個端點
到
的距離等于焦距.
(1)求橢圓的方程;
(2)過點的直線
與橢圓
交于不同的兩點
,
,是否存在直線
,使得△
與△
的面積比值為
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知頂點為原點的拋物線
的焦點
與橢圓
的右焦點重合,
與
在第一和第四象限的交點分別為
.
(1)若是邊長為
的正三角形,求拋物線
的方程;
(2)若,求橢圓
的離心率
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率
,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點
,已知點
的坐標為
,點
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分15分)
已知橢圓C:+=1的離心率為,左焦點為F(-1,0),
(1) 設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線L與橢圓C交于M,N兩點,若,求直線L的方程;
(2)橢圓C上是否存在三點P,E,G,使得S△OPE=S△OPG=S△OEG=?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:
已知拋物線上的點
到焦點的距離等于4,直線
與拋物線相交于不同的兩點
、
,且
(
為定值).設線段
的中點為
,與直線
平行的拋物線的切點為
..
(1)求出拋物線方程,并寫出焦點坐標、準線方程;
(2)用、
表示出
點、
點的坐標,并證明
垂直于
軸;
(3)求的面積,證明
的面積與
、
無關,只與
有關.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線C的頂點在原點,開口向右,過焦點且垂直于拋物線對稱軸的弦長為2,過C上一點A作兩條互相垂直的直線交拋物線于P,Q兩點.
(1)若直線PQ過定點,求點A的坐標;
(2)對于第(1)問的點A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個數;若不能,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com