日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知F1,F2為雙曲線C:
x
2
 
-y2=1
的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( 。
A、
1
4
B、
3
4
C、
3
5
D、
4
5
考點:雙曲線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:根據雙曲線的定義,結合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.
解答: 解:設|PF1|=2|PF2|=2m,則根據雙曲線的定義,可得m=2a
∴|PF1|=4a,|PF2|=2a
∵雙曲線C:
x
2
 
-y2=1

∴|F1F2|=2
2
a,
∴cos∠F1PF2=
16a2+4a2-8a2
2•4a•2a
=
3
4

故選B.
點評:本題考查雙曲線的性質,考查雙曲線的定義,考查余弦定理的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設全集∪=R,集合A={x|-4≤x≤2,x∈Z},B={x|x<-2},則A∩∁UB=( 。
A、{-2,-1,0,1,2}
B、{x|-2≤x<2}
C、{-1,0,1,2}
D、{x|-2<x≤2}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線x2-
y2
2
=1.
(1)求以點A(2,1)為中點的弦所在直線方程;
(2)過點A(2,1)的直線L與所給的雙曲線交于兩點P1及P2,求線段P1P2的中點P的軌跡方程.
(3)過點B(1,1)能否作直線m,使m與所給雙曲線交于兩點Q1及Q2,且點B是線段Q1Q2的中點?這樣的直線m如果存在,求出它的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-kx-3,x∈(-1,5].
(Ⅰ)當k=2時,求函數f(x)的值域;
(Ⅱ)若函數f(x)在區間(-1,5]上是單調函數,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式|x-5|-|x-1|>0的解集為( 。
A、(-∞,3)
B、(-∞,-3)
C、(3,+∞)
D、(-3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的首項a1=a(a>0),前n項和為Sn,且an=
2Sn
n+1
,
(1)求數列{an}的通項公式an及Sn;
(2)記An=a1+a2+a22+…+a2n-1,Bn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
.求不等式An+a2•Bn<513a成立的最大正整數n.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的每項均為正數,首項a1=1.記數列{an}前n項和為Sn,滿足a13+a23+…+an3=Sn2
(1)求a2的值及數列{an}的通項公式;
(2)若bn=
1
anan+3
,記數列{bn}前n項和為Tn,求證:Tn
11
18

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖建立空間直角坐標系,已知正方體的棱長為2,
(1)求正方體各頂點的坐標;
(2)求A1C的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:x2﹢y2+2x-3=0,直線l:x+y+t=0,若直線l與圓C相交于M,N兩點,且|MN|=
14

(1)求直線l在x軸上的截距;
(2)已知點A(2,1),若直線l與圓C相交于M,N兩點,設直線MA的斜率為kMA,直線MB的斜率為kMB.問是否存在使kMA•kMB=2?若存在,求出實數t的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品影视 | 国内福利视频 | 精产国产伦理一二三区 | 亚洲精品欧美 | 久久久精品影院 | 国产乡下妇女做爰视频 | av高清在线观看 | 久久国产综合 | 黄色三级小说 | 亚洲精品视频一区 | 国产成人精品三级麻豆 | 免费看av的网址 | 国产精品麻豆免费版 | 久久91精品 | 久久精品中文字幕 | 国产成人精品一区二区 | 91久久国产综合久久91精品网站 | 免费国产黄色 | 在线观看的av | 亚洲精品美女 | 国产精品美女久久 | 在线播放亚洲 | 91日韩在线| 美女91网站| 国产一区中文字幕 | 欧美国产精品一区二区 | 九九色| 青青综合| 国产专区在线播放 | 亚洲精品欧美 | 黄色av免费观看 | 色天堂视频| 成人免费av | 日韩一级免费视频 | 日韩黄视频 | 一区二区免费视频 | 欧美日韩成人在线 | 国产精品三级在线 | 麻豆精品国产 | 一区二区三区国产视频 | 亚洲天堂一区 |