【題目】設各項均為正數的數列{an}的前n項和為Sn,滿足:對任意的n∈N*,都有an+1+Sn+1=1,又a1.
(1)求數列{an}的通項公式;
(2)令bn=log2an,求(n∈N*)
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,四邊形
為菱形,
,
,
,
,平面
平面
,
,
為
的中點,
為平面
內任一點.
(1)在平面內,過
點是否存在直線
使
?如果不存在,請說明理由,如果存在,請說明作法;
(2)過,
,
三點的平面將幾何體
截去三棱錐
,求剩余幾何體
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖像向右平移
個單位長度,再將所得圖像上的每個點的橫坐標伸長為原來的2倍,縱坐標不變,所得圖像關于直線
對稱,則
的最小正值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(a,3),圓C:(x﹣1)2+(y﹣2)2=4.
(1)設a=4,求過點A且與圓C相切的直線方程;
(2)設a=3,直線l過點A且被圓C截得的弦長為,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,長半軸長與短半軸長的比值為
.
(1)求橢圓的方程;
(2)設經過點的直線
與橢圓
相交于不同的兩點
,
.若點
在以線段
為直徑的圓上,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關注“兩會”,某機構隨機抽取了年齡在15~75歲之間的200人進行調查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區間[15,35)和[35,75]內的人分別稱為“青少年人”和“中老年人”.經統計“青少年人”和“中老年人”的人數之比為19:21.其中“青少年人”中有40人關注“兩會”,“中老年人”中關注“兩會”和不關注“兩會”的人數之比是2:1.
(Ⅰ)求圖中的值;
(Ⅱ)現采用分層抽樣在[25,35)和[45,55)中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是“中老年人”的概率是多少?
(Ⅲ)根據已知條件,完成下面的2×2列聯表,并根據此統計結果判斷:能否有99.9%的把握認為“中老年人”比“青少年人”更加關注“兩會”?
關注 | 不關注 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com