【題目】函數f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f(
﹣x),且f(
+x)=f(
﹣x),則ω的一個可能取值是( )
A.2
B.3
C.4
D.5
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+ +5(常數a,b∈R)滿足f(1)+f(﹣1)=14.
(1)求出a的值,并就常數b的不同取值討論函數f(x)奇偶性;
(2)若f(x)在區間(﹣∞,﹣ )上單調遞減,求b的最小值;
(3)在(2)的條件下,當b取最小值時,證明:f(x)恰有一個零點q且存在遞增的正整數數列{an},使得 =q
+q
+q
+…+q
+…成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上的奇函數,當x>0時,f(x)=x﹣1,則不等式f(x)<0的解集為( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(I)寫出直線的一般方程與曲線
的直角坐標方程,并判斷它們的位置關系;
(II)將曲線向左平移
個單位長度,向上平移
個單位長度,得到曲線
,設曲線
經過伸縮變換
得到曲線
,設曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的焦距為2
,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2 .
(1)求橢圓E的方程及離心率;
(2)點P的坐標為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設直線MB,BP,NB的斜率依次成等差數列,探究m,n之間是否滿足某種數量關系,若是,請給出m,n的關系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幼兒園為訓練孩子的數字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各2張,讓孩子從盒子里任取3張卡片,按卡片上最大數字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數字
(1)求取出的3張卡片上的數字互不相同的概率;
(2)求隨機變量x的分布列;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的公差為d,關于x的不等式 x2+(a1﹣
)x+c≥0的解集是[0,22],則使得數列{an}的前n項和大于零的最大的正整數n的值是( )
A.11
B.12
C.13
D.不能確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com