日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
    已知點B為圓|z|=1的上半部上一點,點A對應復數2,△ABC是以BC為斜邊的等腰直角三角形,且點C位于x軸上方.問:點B對應什么復數時,OC兩點距離最大?并求此最大值.

 

答案:
解析:

答案:解:設點B對應的復數為cosθ+isinθ(0<θ<π),則對應復數(cosθ-2)+isinθ對應復數[(cosθ-2)+isinθ](-i),又.

    ∴對應復數(2+sinθ)+(2-cosθi.

    故||=

    故當π時,||最大值為

    此時B對應的復數為

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網附加題:
A.如圖,四邊形ABCD內接于圓O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.設數列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足
an+4
bn+4
=M
an
bn
,試求二階矩陣M.
C.已知橢圓C的極坐標方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F2為其左、右焦點,直線l的參數方程為
x=2+
2
2
t
y=
2
2
t
(t為參數,t∈R).求點F1,F2到直線l的距離之和.
D.已知x,y,z均為正數.求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-2:矩陣及其變換
(1)如圖,向量
OA
OB
被矩陣M作用后分別變成
OA′
OB′

(Ⅰ)求矩陣M;
(Ⅱ)并求y=sin(x+
π
3
)
在M作用后的函數解析式;
選修4-4:坐標系與參數方程
( 2)在直角坐標系x0y中,直線l的參數方程為
x=3-
2
2
t
y=
5
+
2
2
t
(t為參數),在極坐標系(與直角坐標系x0y取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設圓C與直線l交于點A,B.若點P的坐標為(3,
5
),求|PA|+|PB|.
選修4-5:不等式選講
(3)已知x,y,z為正實數,且
1
x
+
1
y
+
1
z
=1
,求x+4y+9z的最小值及取得最小值時x,y,z的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•海淀區一模)設A(xA,yA),B(xB,yB)為平面直角坐標系上的兩點,其中xA,yA,BxB,yB∈Z.令△x=xB-xA,△y=yB-yA,若|△x|+|△y=3,且|△x|-|△y|≠0,則稱點B為點A的“相關點”,記作:B=i(A).
(Ⅰ)請問:點(0,0)的“相關點”有幾個?判斷這些點是否在同一個圓上,若在,寫出圓的方程;若不在,說明理由;
(Ⅱ)已知點H(9,3),L(5,3),若點M滿足M=i(H),L=i(M),求點M的坐標;
(Ⅲ)已知P0(x0,y0)(x0∈Z,Y0∈Z)為一個定點,點列{Pi}滿足:Pi=i(Pi-1),其中i=1,2,3,…,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:044

    已知點B為圓|z|=1的上半部上一點,點A對應復數2,△ABC是以BC為斜邊的等腰直角三角形,且點C位于x軸上方.問:點B對應什么復數時,OC兩點距離最大?并求此最大值.

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美国产成人一区二区 | 天天看片天天操 | 日韩在线视频中文字幕 | 黄色影视片 | 91麻豆精品国产91久久久更新时间 | 日韩精品视频在线 | 国产精品一码二码三码在线 | 国产精品自拍视频 | 九九免费视频 | 91一区二区三区 | 色噜噜综合网 | 亚洲日本成人 | 国产精品人成在线播放新网站 | 国产精品久久久久久久久久久久久久久久 | 午夜精品一区二区三区免费视频 | 欧美性猛交一区二区三区精品 | 999在线观看精品免费不卡网站 | 国产中文字幕一区 | 麻豆精品久久久 | 日韩毛片| 午夜在线 | 巨大黑人极品videos精品 | 日韩性猛交 | 黄色亚洲网站 | 久久ri资源网| 国产精品久久久久aaaa九色 | 91麻豆精品国产91久久久资源速度 | 欧美成人在线影院 | 久久久www | 亚洲一区二区精品视频 | 久久精品一区二区三区四区 | 久久精品色欧美aⅴ一区二区 | 在线视频一二三 | 日韩视频中文字幕 | 超碰香蕉 | 999免费视频 | 亚洲精品视频一区 | 国产aaa大片| 国产日韩欧美在线 | 99综合在线 | 影音先锋中文字幕在线 |