日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,已知四棱錐P-ABCD底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為,求此時異面直線AE和CH所成的角.

【答案】分析:(1)由四邊形ABCD為棱形,∠ABC=60°,知△ABC是等邊三角形,由E是BC的中點,知AE⊥BC,由BC∥AD,知AE⊥AD,由PA⊥平面ABCD,知PA⊥AE,由此能夠證明AE⊥PD.
(2)設AB=2,H為PD上任意一點,連接AH,EH,由(1)知AE⊥平面PAD,從而推導出∠EHA為EH與平面PAD所成的角,由此能求出異面直線所成的角的大小.
解答:解:(1)證明:∵四邊形ABCD為棱形,∠ABC=60°,
∴△ABC是等邊三角形,
∵E是BC的中點,∴AE⊥BC,
又∵BC∥AD,∴AE⊥AD,
∵PA⊥平面ABCD,AE?平面ABCD,∴PA⊥AE,
∵PA?平面PAD,AD?平面PAD,且PA∩AD=A,
∴AE⊥平面PAD,
又∵PD?平面PAD,∴AE⊥PD.
(2)設AB=2,H為PD上任意一點,
連接AH,EH,由(1)知AE⊥平面PAD,
∴∠EHA為EH與平面PAD所成的角,
在Rt△EAH中,AE=,所以當AH最短時,即AH⊥PD時,EH與平面PAD所成的角∠EHA最大,
此時tan∠EHA=l
因此AH=AC1∥面CDB1.又AD=2,所以∠ADH=45°,所以 PA=2.
此時異面直線AE和CH異面直線所成角30°.
點評:本題考查異面直線垂直的證明,考查異面直線所成的角的求法,解題時要認真審題,注意等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产第一页在线播放 | 国产自在现线2019 | 九九精品视频在线 | 欧美日韩国产综合在线 | 日本黄色免费观看 | 国产精品综合视频 | 精品免费在线 | 国产中文字幕在线观看 | 久久99久久久久 | 成人一区二区在线播放 | 国产98色在线 | 日韩 | 成人激情视频 | 97国产一区二区 | 精品欧美一区二区三区久久久 | 国产成人中文字幕 | 日本一区二区三区四区 | 九九综合九九 | 干比网 | 欧美一级网 | 看黄网址| 日韩精品久久久久 | 国产一区二区三区在线 | 日本一区二区三区免费观看 | 亚洲最新视频在线观看 | 国产精品美女久久久 | 欧美一区三区三区高中清蜜桃 | 色综合激情 | 国产aⅴ一区二区 | 羞羞视频在线观看入口 | 日韩在线观看 | 日韩久久久久 | 精品久久久久久亚洲精品 | 91免费在线看 | 亚洲精品一二三区 | 国产不卡一二三区 | 久久精品欧美一区二区三区不卡 | 久久久久久久国产精品影院 | 国产精品正在播放 | 成人精品一区二区三区中文字幕 | 麻豆一区| 日韩高清国产一区在线 |