【題目】東莞某家具生產廠家根據市場調查分析,決定調整新產品生產方案,準備每周(按40個工時計算)生產書桌、書柜、電腦椅共120張,且書桌至少生產20張.已知生產這些家具每張所需工時和每張產值如表:
家具名稱 | 書桌 | 書柜 | 電腦椅 |
工 時 | |||
產值(千元) | 4 | 3 | 2 |
問每周應生產書桌、書柜、電腦椅各多少張,才能使產值最高?最高產值是多少?(以千元為單位)
【答案】解:設每周生產書桌x張、書柜y張,則生產電腦椅120﹣x﹣y張,產值為z千元,
則依題意得z=4x+3y+2(120﹣x﹣y)=2x+y+240,
由題意得x,y滿足 ,
即 ,
畫出可行域如圖所示.
解方程組 ,得
,即M(20,60).
做出直線l0:2x+y=0,
平移l0過點M(20,60)時,目標函數有最大值,zmax=2×20+60+240=340(千元).
答:每周應生產書桌20張,書柜60張,電腦椅40張,才能使產值最高,最高產值是340千元.
【解析】設每周生產書桌x張、書柜y張,則生產電腦椅120﹣x﹣y張,產值為z千元,由題意列出關于x,y的不等式組,再求出線性目標函數z=4x+3y+2(120﹣x﹣y)=2x+y+240,
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,代入目標函數得答案.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx在x=1處取得極值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)對于任意的x∈(0,+∞)成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱錐A﹣BCD的側棱長為2,底面BCD的邊長為2 ,E,分別為BC,BD的中點,則三棱錐A﹣BEF的外接球的半徑R= , 內切球半徑r= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B是非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射,設f:x→ 是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B=;②若B={1,2},則A∩B= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: 過點
,離心率為
,點F1 , F2分別為其左、右焦點.
(1)求橢圓E的標準方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點P,Q,且 ?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣3mx+n(m>0)的兩個零點分別為1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范圍.
(3)令 ,若函數F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零點,求實數r的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com