【題目】已知橢圓的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
(1)求橢圓的方程;
(2)設分別為橢圓
的左,右焦點,過
作直線
(與
軸不重合)交橢圓于
,
兩點,線段
的中點為
,記直線
的斜率為
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某中學數學老師分別用兩種不同教學方式對入學數學平均分和優秀率都相同的甲、乙兩個高一新班(人數均為20人)進行教學(兩班的學生學習數學勤奮程度和自覺性一致),數學期終考試成績莖葉圖如下:
(1)學校規定:成績不低于75分的為優秀,請填寫下面的聯表,并判斷有多大把握認為“成績優秀與教學方式有關”.
附:參考公式及數據
(2)從兩個班數學成績不低于90分的同學中隨機抽取3名,設為抽取成績不低于95分同學人數,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校隨機調查了80位學生,以研究學生中愛好羽毛球運動與性別的關系,得到下面的列聯表:
愛好 | 不愛好 | 合計 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計 | 30 | 50 | 80 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調查了本校的3名學生,設這3人中愛好羽毛球運動的人數為,求
的分布列,數學期望及方差;
(Ⅱ)根據表中數據,能否有充分證據判斷愛好羽毛球運動與性別有關?若有,有多大把握?
0.500 | 0.100 | 0.050 | 0.010 | |
| 0.455 | 2.706 | 3.841 | 6.635 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“珠算之父”程大為是我國明代偉大數學家,他的應用數學巨著《算法統綜》的問世,標志著我國的算法由籌算到珠算轉變的完成,程大位在《算法統綜》中常以詩歌的形式呈現數學問題,其中有一首“竹筒容米”問題:“家有九節竹一莖,為因盛米不均平,下頭三節三升九,上稍四節儲三升,唯有中間兩節竹,要將米數次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數量.)用你所學的數學知識求得中間兩節的容積為( )
A. 升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的左右焦點分別為
,
,離心率為
,點
在橢圓
上,
,
,過
與坐標軸不垂直的直線
與橢圓
交于
,
兩點,
為
,
的中點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,且
,求直線
所在的直線方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com