日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
A是由定義在[2,4]上且滿足如下條件的函數φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數L(0<L<0),使得對任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數k,對任意的正整數p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.
(本小題滿分13分)
(Ⅰ)對任意x∈[1,2],φ(2x)∈(1,2);x∈[1,2],
33
φ(2x)≤
35
,1<
33
φ(2x)≤
35
<2,所以φ(2x)∈(1,2);.
對任意的x1,x2∈[1,2],|?(2x1)-?(2x2)|=|x1-x2|
2
3(1+2x1)2
+
2(1+x1)(1+x2)
+
3(1+x2)2

3<
3(1+x1)2
+
3(1+2x2)(1+x2)
+
3(1+x2)2

所以0<
2
3(1+2x1)2
+
2(1+x1)(1+x2)
+
3(1+x2)2
2
3

≤L|x1-x2|,
2
3(1+2x1)2
+
2(1+x1)(1+x2)
+
3(1+x2)2
=L
,0<L<1,
|?(2x1)-?(2x2)|≤L|x1-x2|,所以φ(x)∈A.…(5分)
(Ⅱ)反證法:設存在兩個x0,x0′∈(1,2),x0≠x0′使得x0′=φ(2x0′),
則由|φ(2x0)-φ(2x0′)|≤L|x0-x0′|,得)|x0-x0′|≤L|x0-x0′|,所以L≥1,矛盾,故結論成立.…(8分)
(Ⅲ)|x3-x2|=|?(2x2)-?(2x1)|≤L|x2-x1|,
所以|xn+1-xn|=|?(2xn)-?(2xn-1|≤L|xn-xn-1|≤L2|xn-1-xn-2|…
≤Ln-1|x2-x1||xk+p-xk|=|(xk+p-xk+p-1)+(xk+p-1-xk+p-2)+…+(xk+1-xk)|
≤|xk+p-xk+p-1|+|xk+p-1-xk+p-2|+…+|xk+1-xk|
≤Lk+p-2|x2-x1|+Lk+p-3|x2-x1|+…+Lk-1|x2-x1|
=
Lk-1(1-Lp)
1-L
|x2-x1|
Lk-1
1-L
|x2-x1|
.…(13分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿足如下條件的函數φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)設φ(x)=
31+x
,x∈[1,2],證明:φ(x)∈A;
(Ⅱ)設φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•延慶縣一模)A是由定義在[2,4]上且滿足如下條件的函數φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數L(0<L<0),使得對任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數k,對任意的正整數p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中數學 來源:延慶縣一模 題型:解答題

A是由定義在[2,4]上且滿足如下條件的函數φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)設φ(x)=
31+x
,x∈[1,2],證明:φ(x)∈A;
(Ⅱ)設φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

查看答案和解析>>

科目:高中數學 來源: 題型:

20.

A是由定義在[2,4]上且滿足如下條件的函數(x)組成的集合:①對任意的都有(2x);②存在常數L(0<L<1),使得對任意的x1,x2[1,2],都有|(2x1)- (2 x2)|.

(Ⅰ)設(x)=證明:(x)A:

(Ⅱ)設(x),如果存在x0(1,2),使得x0=(2x0),那么這樣的x0是唯一的:

(Ⅲ)設任取x1(1,2),令xn+1=(2xn),n=1,2……證明:給定正整數k,對任意的正整數p,成立不等式Equation.3

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 蜜桃视频一区二区三区 | 中文字幕在线观看一区二区三区 | 伊人天堂网 | 欧美a一级 | 午夜视频一区二区 | 国产精品96 | 久久xxx | 亚洲综合区 | av青青草 | 欧美精品一二三 | 国产香蕉视频 | 亚洲欧洲在线观看 | 香蕉伊人网 | 国产欧美久久久 | 成人午夜av| 黄色小视频免费 | 精品视频在线播放 | 夜晚福利视频 | 国产视频一区二区在线观看 | 天天色网站 | 黄色大片在线播放 | 久久精品一区二区三区不卡牛牛 | 性色av网站 | 国产成人在线播放 | 亚洲成人av在线播放 | 在线视频日韩 | 91精品久久久久久久久 | 亚洲激情在线 | 欧美成人一区二区三区 | 五月婷婷影院 | 国产精品久久久久久无人区 | 午夜精品福利视频 | 精品久久影院 | www.日本在线| 国产一区二区三区四区 | 成人免费看片在线观看 | 国产黄a三级 | 中文在线免费观看 | 黄色成人在线视频 | 欧美激情综合 | 国产一级18片视频 |