日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
若方程
x2
2-k
+
y2
k-1
=1
表示的圖形是雙曲線,則k的取值范圍為
 
分析:根據雙曲線的標準方程,可得只需2-k與k-1只需異號即可,則可得不等式(2-k)(k-1)<0,進而可得答案.
解答:解:由題意知(2-k)(k-1)<0,
解得k<1或者k>2.
故答案為:{k|k<1或k>2}.
點評:本題主要考查了雙曲線的定義,屬基礎題;解答的關鍵是根據雙曲線的標準方程建立不等關系.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓O:x2+y2=1,點O為坐標原點,一條直線l:y=kx+b(b>0)與圓O相切并與橢圓
x2
2
+y2=1
交于不同的兩點A、B.
(Ⅰ)設b=f(k),求f(k)的表達式,并注明k的取值范圍;
(Ⅱ)若
OA
OB
=
2
3
,求直線l的方程;
(Ⅲ)若
OA
OB
=m(
2
3
≤m≤
3
4
),求△OAB面積S的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣元二模)已知圓O:x2+y2=1,點O為坐標原點,一條直線l:y=kx+b(b>0)與圓O相切并與橢圓
x2
2
+y2=1
交于不同的兩點A、B.
(1)設b=f(k),求f(k)的表達式;
(2)若
OA
OB
=
2
3
,求直線l的方程;
(3)若
OA
OB
=m(
2
3
≤m≤
3
4
)
,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數學 來源: 題型:

已知以動點P為圓心的圓與直線y=-
1
20
相切,且與圓x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求動P的軌跡C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點,且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
    (1)求直線L斜率k的取值范圍;
    (2)設橢圓E的方程為
x2
2
+
y2
a
=1(0<a<2).已知直線L與拋物線C交于A、B兩個不同點,L與橢圓E交于P、Q兩個不同點,設AB中點為R,PQ中點為S,若
OR
OS
=0,求E離心率的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知n∈N*,設函數fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數y=f2(x)-kx(k∈R)的單調區間;
(2)是否存在整數t,對于任意n∈N*,關于x的方程fn(x)=0在區間[t,t+1]上有唯一實數解?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲国产视频网站 | 六月丁香啪啪 | 男女啪啪免费网站 | 日本免费不卡 | 成人精品一区二区三区中文字幕 | 久久精品久久久 | 国产精品成人免费 | 97国产一区二区精品久久呦 | 一区二区免费在线观看 | 欧美日一区二区 | 中文字幕 视频一区 | 国产精品一区二区三区不卡 | 亚洲精品中文字幕乱码无线 | 一本一道久久a久久精品综合蜜臀 | 日日操视频| 开心春色激情网 | 韩国三级中文字幕hd久久精品 | av在线免费观看一区二区 | 久久精品欧美一区二区三区不卡 | 日韩av在线导航 | 久久久久久国产精品 | 精品国产一区二区三区在线观看 | 免费欧美黄色片 | 欧美激情一区二区三区 | 精品国产依人香蕉在线精品 | 在线视频二区 | 亚洲男人的天堂网站 | 日韩欧美精品 | 一级一级国产片 | 国产老女人精品毛片久久 | 中文字幕在线免费 | www国产免费 | 久久国产精品视频 | 99热在线观看 | 久久久久久久久成人 | 久久精品国产免费看久久精品 | 国产视频第一页 | 99久热精品 | 免费成人在线观看视频 | 久久久久久久国产精品 | 国产亚洲精品成人av久久影院 |