【題目】在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則剩余部分體積與原四棱錐體積的比值為( )
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|cosx|sinx,給出下列五個說法: ①f( π)=﹣
;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區間[﹣ ,
]上單調遞增;
④函數f(x)的周期為π.
⑤f(x)的圖象關于點( ,0)成中心對稱.
其中正確說法的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等腰△ABC中,AC=BC= ,AB=2,E、F分別為AC、BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=
.
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,在直角梯形ABCD中, ,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=f(x)導函數的圖象如圖所示,則下列說法錯誤的是( )
A.(﹣1,3)為函數y=f(x)的遞增區間
B.(3,5)為函數y=f(x)的遞減區間
C.函數y=f(x)在x=0處取得極大值
D.函數y=f(x)在x=5處取得極小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},則(UM)∩N=( )
A.{x|2≤x≤3}
B.{x|2<x≤3}
C.{x|x≤﹣1,或2≤x≤3}
D.{x|x<﹣1,或2<x≤3}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列 的前n項和為Sn
,且滿足:
① ;②
,其中
且
.
(1)求p的值;
(2)數列 能否是等比數列?請說明理由;
(3)求證:當r 2時,數列
是等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com