已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)在
上的最小值,并寫出
取最小值時(shí)相應(yīng)的
值.
(Ⅰ);(Ⅱ)
時(shí),函數(shù)
取得最小值
【解析】
試題分析:(Ⅰ)先用正弦二倍角公式將角統(tǒng)一,再用化一公式,將整理成
的形式,根據(jù)正弦周期公式
求其周期。(Ⅱ)由(Ⅰ)知
,根據(jù)
的范圍,求整體角
的范圍,再根據(jù)正弦函數(shù)圖像求
的范圍,即可求得
在
上的最小值及相應(yīng)
的值。
試題解析:解:(Ⅰ) 2分
, 4分
所以函數(shù)的最小正周期
6分
(Ⅱ)因?yàn)?/span>,
, 8分
, 10分
, 11分
所以當(dāng),即
時(shí),函數(shù)
取得最小值
. 13分
考點(diǎn):1二倍角公式、化一公式,2正弦函數(shù)最值及圖像。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)
在
上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北孝感高中高三年級(jí)九月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_ST.files/image002.png">,若
在
上為增函數(shù),則稱
為“一階比增函數(shù)”;若
在
上為增函數(shù),則稱
為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為
,所有“二階比增函數(shù)”組成的集合記為
.
(Ⅰ)已知函數(shù),若
且
,求實(shí)數(shù)
的取值范圍;
(Ⅱ)已知,
且
的部分函數(shù)值由下表給出,
|
|
|
|
|
|
|
|
|
|
求證:;
(Ⅲ)定義集合
請(qǐng)問:是否存在常數(shù),使得
,
,有
成立?若存在,求出
的最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省武威五中高一(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com