已知橢圓的頂點與雙曲線的焦點重合,它們的離心率之和為
,若橢圓的焦點在
軸上,求橢圓的方程.
科目:高中數學 來源: 題型:解答題
(本題滿分12分)設橢圓E: (a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)已知橢圓C1:的離心率為
,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,它的準線經過雙曲線
:
的左焦點
且垂直于
的兩個焦點所在的軸,若拋物線
與雙曲線
的一個交點是
.
(1)求拋物線的方程及其焦點
的坐標;
(2)求雙曲線的方程及其離心率
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點A,B.
(Ⅰ)求實數k的取值范圍;
(Ⅱ)是否存在實數k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)如圖,在平面直坐標系中,已知橢圓
,經過點
,其中e為橢圓的離心率.且橢圓
與直線
有且只有一個交點。
(Ⅰ)求橢圓的方程;
(Ⅱ)設不經過原點的直線與橢圓
相交與A,B兩點,第一象限內的點
在橢圓上,直線
平分線段
,求:當
的面積取得最大值時直線
的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分15分) 已知動圓過定點
,且與直線
相切,橢圓
的對稱軸為坐標軸,一個焦點是
,點
在橢圓
上.
(Ⅰ)求動圓圓心的軌跡
的方程及其橢圓
的方程;
(Ⅱ)若動直線與軌跡
在
處的切線平行,且直線
與橢圓
交于
兩點,問:是否存在著這樣的直線
使得
的面積等于
?如果存在,請求出直線
的方程;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com