【題目】已知函數(
是非零實常數)滿足
且方程
有且僅有一個實數解.
(1)求的值
(2)當時,不等式
恒成立,求實數
的取值范圍
(3)在直角坐標系中,求定點到函數
圖像上的任意一點
的距離
的最小值,并求取得最小值時
的值
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2017年1月至2019年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.根據該折線圖,下列結論錯誤的是( )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位數為30萬人
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統,以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本為萬元.
(1)若使每臺機器人的平均成本最低,問應買多少臺?
(2)現按(1)中的數量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀(如圖).經實驗知,每臺機器人的日平均分揀量為,(單位:件).已知傳統的人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大時,用人數量比引進機器人前的用人數量最多可減少百分之幾?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點
在
上,在梯形
區域內部展示文物,
是玻璃幕墻,游客只能在
區域內參觀.在
上點
處安裝一可旋轉的監控攝像頭.
為監控角,其中
、
在線段
(含端點)上,且點
在點
的右下方.經測量得知:
米,
米,
米,
.記
(弧度),監控攝像頭的可視區域
的面積為
平方米.
(1)求關于
的函數關系式,并寫出
的取值范圍;(參考數據:
)
(2)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,
,點
為橢圓
的右頂點,直線
與橢圓相交于不同于點
的兩個點
、
.
(1)求橢圓的標準方程;
(2)當時,求
面積的最大值;
(3)若,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某游戲棋盤上標有第、
、
、
、
站,棋子開始位于第
站,選手拋擲均勻硬幣進行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第
站或第
站時,游戲結束.設游戲過程中棋子出現在第
站的概率為
.
(1)當游戲開始時,若拋擲均勻硬幣次后,求棋子所走站數之和
的分布列與數學期望;
(2)證明:;
(3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第
站,則記選手獲勝.請分析這個游戲是否公平.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)若對任意的,
恒成立,求實數
的取值范圍;
(2)若的最小值為
,求實數
的值;
(3)若對任意實數、
、
,均存在以
、
、
為三邊邊長的三角形,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:極坐標與參數方程
已知在平面直角坐標系xOy中,O為坐標原點,曲線C: (α為參數),在以平面直角坐標系的原點為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系,直線l:ρ
.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;
(Ⅱ)曲線C上恰好存在三個不同的點到直線l的距離相等,分別求出這三個點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果存在常數a,使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:2,3,6,m(m>6)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)已知有窮等差數列{bn}的項數是n0(n0≥3),所有項之和是B,求證:數列{bn}是“兌換數列”,并用n0和B表示它的“兌換系數”;
(3)對于一個不少于3項,且各項皆為正整數的遞增數列{cn},是否有可能它既是等比數列,又是“兌換數列”?給出你的結論,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com