日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,E為AB的中點,BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求二面角B-A1E-C余弦值的大。
分析:(I)BC⊥AC,根據A1D⊥底ABC,得到A1D⊥BC,A1D∩AC=D,所以BC⊥面A1AC,從而BC⊥AC1,又因BA1⊥AC1,BA1∩BC=B,根據線面垂直的判定定理可知AC1⊥底A1BC;
(II)由(I)知AC1⊥A1C,ACC1A1為菱形,從而可得△A1AE≌△A1CE.作AF⊥A1E于F,連CF,則CF⊥A1E,故∠AFC為二面角A-A1E-C的平面角,從而可求二面角B-A1E-C余弦值的大。
解答:證明:(I)∠BCA=90°得BC⊥AC,
因為A1D⊥底ABC,所以A1D⊥BC,
因為A1D∩AC=D,所以BC⊥面A1AC,
所以BC⊥AC1
因為BA1⊥AC1,BA1∩BC=B,
所以AC1⊥底A1BC
(II)由(I)知AC1⊥A1C,ACC1A1為菱形,
∴∠A1AC=60°AA1=AC=A1C=2,
又CE=EA,故△A1AE≌△A1CE.
作AF⊥A1E于F,連CF,則CF⊥A1E,
故∠AFC為二面角A-A1E-C的平面角,
A1E=
A1D2+DE2
=2,AF=CF=
AE•
AA12-(
AE
2
)
2
A1E
=
7
4

cos∠AFC=
AF2+CF2-AC2
2AF•CF
=-
1
7

故二面角B-A1E-C余弦值的大小
1
7
點評:本題主要考查了線面垂直的判定,以及面面角等有關知識,同時考查了數形結合、化歸與轉化的數學思想方法,以及空間想象能力、推理論證能力和運算求解能力,屬于中檔題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知斜三棱柱ABC-A1B1C1的側面BB1C1C是邊長為2的菱形,∠B1BC=60°,側面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
(1)求證:AC⊥平面BB1C1C;
(2)求AB1與平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知斜三棱柱ABC-A1B1C1的側面BB1C1C與底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中點.
(Ⅰ)求證:AB1∥平面A1CM;
(Ⅱ)若AB1與平面BB1C1C所成的角為45°,求二面角B-AC-B1的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知斜三棱柱ABC-A1B1C1的底面邊長AB=2,BC=3,BC⊥面ABC1,CC1與面ABC所成的角為60°則斜三棱柱ABC-A1B1C1體積的最小值是
9
3
9
3

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知斜三棱柱ABC-A1B1C1的各棱長均為2,側棱與底面所成角為
π3
,且側面ABB1A1垂直于底面.
(1)判斷B1C與C1A是否垂直,并證明你的結論;
(2)求四棱錐B-ACC1A1的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,點D為AC的中點,A1D⊥平面ABC,A1B⊥ACl
(I)求證:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 伊人av在线 | 久久青青操 | 国产精品夜夜春夜夜爽久久电影 | 免费在线看a| 男女羞羞视频免费在线观看 | 亚洲精品乱码久久久久久不卡 | 日本免费一区二区视频 | 精品在线一区二区 | 日韩视频一区二区三区 | 成人激情视频免费观看 | 成人久久久久 | 久久精品123 | 日本a黄| 天堂在线一区二区 | 午夜黄色一级片 | 中文不卡在线 | 亚洲精品免费在线观看 | 日韩精品中文字幕在线播放 | 国产精品久久影院 | 狠狠插狠狠操 | 欧美日韩二区三区 | 亚洲呦呦 | 激情视频区 | 欧美日本免费 | 欧美一区二区三区精品 | 99久久综合狠狠综合久久 | 成人免费一区二区三区视频网站 | 色婷婷小说 | 在线免费观看黄 | 亚洲人免费视频 | 亚洲精品视频一区 | 在线观看成人小视频 | 欧美一级免费看 | 国产色黄视频 | 日韩精品无码一区二区三区 | 亚洲精品99久久久久中文字幕 | 色婷婷一区二区 | 亚洲网站久久 | 日韩精品一区二区三区免费视频 | 国产一区精品 | 成人网在线视频 |