(1)依題意:an + 1 =" bn" + 1 + cn + 1 =" a" an + an + b an2,
則a2 =" a" a1 + a1 + b a12 ∴a + 1 + b =

①
則a3 =" a" a2 + a2 + b a22 ∴

②
解①②得a = 1,b = –

從而an + 1 =" 2an" –

an2 (n∈N*) ………………………5分
(2)證法(Ⅰ)由于an + 1 =" 2an" –

an2 = –

(an – 2)2 + 2≤2.
但an + 1≠2,否則可推得a 1=" a" 2= 2與a 1= 1,a2 = 1.5矛盾.故an + 1<2 于是an

<2
又an + 1– an= –

an2 + 2an – an = –

an (an – 2) >0,
所以an + 1>an 從而an<an + 1<2 …………………………………9分
證法(Ⅱ)由數學歸納法
(i)當n = 1時,a1 = 1,a2 = 1.5,顯然a1<a2<2成立
(ii)假設n = k時, ak<ak + 1<2成立.
由于函數f (x) = –

x2 + 2x = –

(x – 2)2 + 2在[0,2]上為增函數,
則f (ak) <f (ak + 1) <f (2)即

ak (4 – ak) <

ak + 1(4 –ak + 1) <

×2×(4 – 2)
即 ak + 1<ak + 2<2成立. 綜上可得n∈N*有an<an + 1<2 …………………………9分
(3)由an + 1 =" 2an" –

an2得2 (an + 1– 2) =" –" (an – 2)2 即(2 – an + 1) =

(2 – an)2
又由(2)an<an + 1<2可知2 – an + 1>0,2 – an>0
則lg (2 – an + 1) =" 2" lg (2 – an) – lg 2 ∴lg (2 – an +1) – lg2 =" 2[lg" (2 – an) – lg2]
即{lg (2 – an + 1) – lg2}為等比數列,公比為2,首項為lg (2 – a1) – lg 2 =" –lg" 2
故lg (2 – an) – lg 2 =" (–lg" 2)·2n – 1 ∴an =" 2" – 2

(n∈N*)為所求………13分