日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
定義在R上的函數f(x)滿足:對任意實數m,n,總有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1.
(1)試求f(0)的值;
(2)判斷f(x)的單調性并證明你的結論;
(3)若對任意的t∈R,不等式f(t2-2t)-f(k-2t2)<0恒成立,求k的取值范圍.
(1)在f(m+n)=f(m)•f(n)中令m=1,n=0,得:f(1)=f(1)•f(0)
因為f(1)≠0,所以,f(0)=1.
(2)要判斷f(x)的單調性,可任取x1,x2∈R,且設x1<x2
在f(m+n)=f(m)•f(n)中取m+n=x2,m=x1
則f(x2)=f(x1)•f(x2-x1),
∵x2-x1>0,
∴0<f(x2-x1)<1
為比較f(x2),f(x1)的大小,只需考慮fx1(  )的正負即可.
在在f(m+n)=f(m)•f(n)中令m=x,n=-x,則得f(x)-f(-x)=1.
∵x>0時0<f(x)<1,
∴當x<0時,f(x)=
1
f(-x)
>1>0.
又f(0)=1,所以,綜上,可知,對于任意x1∈R,均有f(x1)>0.
∴f(x2)-f(x1)=f(x1)[f(x2-x1)-1]<0.
∴函數f(x)在R上單調遞減.
(3)不等式即f(t2-2t)<f(k-2t2),
由(2)知函數f(x)在R上單調遞減,
∴t2-2t>k-2t2
∴k<3t2-2t,其中t∈R.
∴k<(3t2-2t)min,而3t2-2t=3(t-
1
3
)
2
-
1
3
1
3

∴k<-
1
3
,即k的取值范圍是(-∞,-
1
3
).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的函數f(x)既是偶函數又是周期函數,若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

20、已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區間[-3,3]上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)的圖象是連續不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數f(x)一定存在零點的區間是(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄色网址av | www.久久爱.cn | 伦乱视频| 91社区在线高清 | 国产综合精品 | 久久h| 日韩在线色 | 亚洲精品动漫久久久久 | 自拍偷拍专区 | 国产99久久精品 | 久久88 | 亚洲精品乱码久久久久久9色 | www国产免费 | 男女免费在线观看视频 | 日韩另类在线 | 欧美怡红院视频一区二区三区 | 欧美一级黄色影院 | 色综合久久88色综合天天 | 黄在线看| 美女久久久久 | 国产免费看av大片的网站吃奶 | 黄色一级毛片 | 成人国产精品入口 | 欧美日本国产欧美日本韩国99 | 国产精品大全 | 亚洲天堂一区 | 免费av一区二区三区 | 91视频网| 九九久久久| 国产毛片毛片 | 黄色av观看| 美日韩久久 | 免费的黄色av网站 | 成人免费看电影 | 日韩欧美在线一区 | 91高清在线 | 国产91av在线| 欧美手机在线 | 性欧美日本 | 中文无码久久精品 | 2019精品手机国产品在线 |