【題目】已知函數,
.
(1)設,求
的最小值;
(2)若曲線與
僅有一個交點
,證明:曲線
與
在點
處有相同的切線,且
.
科目:高中數學 來源: 題型:
【題目】設函數f(x)的解析式滿足 .
(1)求函數f(x)的解析式;
(2)當a=1時,試判斷函數f(x)在區間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數 ,求函數g(x)在區間
上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
(Ⅰ)求曲線的直角坐標方程,并指出其表示何種曲線;
(Ⅱ)設直線與曲線
交于
兩點,若點
的直角坐標為
,
試求當時,
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的動直線與圓
相交于不同的兩點
.
(1)求線段的中點
的軌跡
的方程;
(2)是否存在實數,使得直線
與曲線
只有一個交點?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐曲線:
(
為參數)和定點
,
,
是此圓錐曲線
的左、右焦點.
(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線
的極坐標方程;
(2)經過且與直線
垂直的直線交此圓錐曲線
于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,底面
為矩形,
,
,
,
,
為棱
上一點,平面
與棱
交于點
.
(Ⅰ)求證: ;
(Ⅱ)求證: ;
(Ⅲ)若,試問平面
是否可能與平面
垂直?若能,求出
值;若不能,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (
)的右焦點為F(2,0),且過點P(2,
). 直線
過點F且交橢圓C于A、B兩點.
(1)求橢圓C的方程;
(2)若線段AB的垂直平分線與x軸的交點為M(),求直線
的方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com