設直線與拋物線
交于
兩點.
(1)求線段的長;(2)若拋物線
的焦點為
,求
的值.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,以坐標原點O為極點x軸的正半軸為極軸建立極坐標系, 曲線C1的極坐標方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,直角坐標系中,一直角三角形
,
,B、D在
軸上且關于原點
對稱,
在邊
上,BD=3DC,△ABC的周長為12.若一雙曲線
以B、C為焦點,且經過A、D兩點.
⑴ 求雙曲線的方程;
⑵ 若一過點(
為非零常數)的直線
與雙曲線
相交于不同于雙曲線頂點的兩點
、
,且
,問在
軸上是否存在定點
,使
?若存在,求出所有這樣定點
的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線的焦點在拋物線
上,點
是拋物線
上的動點.
(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過點作拋物線
的兩條切線,
、
分別為兩個切點,設點
到直線
的距離為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知直線l:x=my+1過橢圓的右焦點F,拋物線:
的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且
,當m變化時,探求λ1+λ2的值是否為定值?若是,求出λ1+λ2的值,否則,說明理由;(3)接AE、BD,試證明當m變化時,直線AE與BD相交于定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為.
(1)求橢圓方程;
(2)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知橢圓:
的右焦點為F,離心率
,橢圓C上的點到F的距離的最大值為
,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com