日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

XOY平面上有一點列P1a1b1),P2a2b2),,Pnan,bn),,對每個自然數n,點Pn位于函數y=2000x0a10)的圖象上,且點Pn、點(n,0)與點(n+1,0)構成一個以Pn為頂點的等腰三角形.

)求點Pn的縱坐標bn的表達式;

)若對每個自然數n,以bn,bn1,bn2為邊長能構成一個三角形,求a的取值范圍;

)(理)設Bnb1,b2bnnN.a取()中確定的范圍內的最小整數,求數列{Bn}的最大項的項數.

(文)設cnlgbn)(nN.a。)中確定的范圍內的最小整數,問數列{cn}前多少項的和最大?試說明理由.

 

答案:
解析:

解:(Ⅰ)由題意,ann,∴bn=2000(

(Ⅱ)∵函數y=2000(x(0<a<10)遞減,

∴對每個自然數n,有bnbn1bn2

則以bn,bn1,bn2為邊長能構成一個三角形的充要條件是bn2bn1bn,

即(2+(-1)>0,

解得a<-5(1+)或a>5(-1),

∴5(-1)<a<10.

(Ⅲ)(理)∵5(-1)<a<10,

a=7,bn=2000(

數列{bn}是一個遞減的正數數列.對每個自然數n≥2,BnbnBn1

于是當bn≥1時,BnBn1,當bn<1時,BnBn1,

因此,數列{Bn}的最大項的項數n滿足不等式bn≥1且bn1<1.

bn=2000(≥1,得n≤20.8,∴n=20.

(文)∵5(-1)<a<10,∴a=7,bn=2000(

于是cn=lg[2000(]=3+lg2(n)lg0.7

數列{cn}是一個遞減的等差數列.

因此,當且僅當cn≥0,且cn1<0時,數列{cn}的前n項的和最大.

cn=3+lg2+(n)lg0.7≥0,

n≤20.8,∴n=20.

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每一個(n∈N+),點Pn(an,bn)在函數y=2000(
a10
)
x
(0<a<10)的圖象上,且點Pn(an,bn)與點(n,0)和(n+1,0)構成一個以點Pn(an,bn)為頂點的等腰三角形.
(1)求點Pn(an,bn)的縱坐標bn關于n的表達式;
(2)若對每一個自然數n,以bn,bn+1,bn+2能構成一個三角形,求a的范圍;
(3)設Bn=b1•b2•b3•…•bn(n∈N+),若a。2)中確定的范圍內的最小整數時,求{Bn}中的最大項.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2000•上海)在XOY平面上有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,對每個自然數n,點P,位于函數y=2000(
a10
)n(0<a<10)
的圖象上,且點Pn,點(n,0)與點(n+1.0)構成一個以Pn為頂點的等腰三角形.
(Ⅰ)求點Pn的縱坐標bn的表達式.
(Ⅱ)若對每個自然數n,以bn,bn+1,bn+2為邊長能構成一個三角形,求a取值范圍.
(Ⅲ)設Bn=b1b2…bn(n∈N).,若a。2)中確定的范圍內的最小整數,求數列{Bn}的最大項的項數.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2000•上海)在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每個自然數n,點Pn位于函數y=2000(
a10
)x
,(0<a<10)的圖象上,且點Pn、點(n,0)與點(n+1,0)構成一個以Pn為頂點的等腰三角形.
(Ⅰ)求點Pn的縱坐標bn的表達式;
(Ⅱ)若對每個自然數n,以bn,bn+1,bn+2為邊長能構成一個三角形,求a的取值范圍;
(Ⅲ)設Cn=lg(bn),n∈N*,若a取(Ⅱ)中確定的范圍內的最小整數,問數列{Cn}前多少項的和最大?試說明理由.(lg2=0.3010,lg7=0.8450)

查看答案和解析>>

科目:高中數學 來源: 題型:

xOy平面上有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,對每個自然數nPn位于函數y=2000()x(0<a<1)的圖像上,且點Pn,點(n,0)與點(n+1,0)構成一個以Pn為頂點的等腰三角形.

(1)求點Pn的縱坐標bn的表達式;

(2)若對于每個自然數n,以bn,bn+1,bn+2為邊長能構成一個三角形,求a的取值范圍;

(3)設Cn=lg(bn)(n∈N*),若a取(2)中確定的范圍內的最小整數,問數列{Cn}前多少項的和最大?試說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在xoy平面上有一點列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對每一個(n∈N+),點Pn(an,bn)在函數y=2000數學公式(0<a<10)的圖象上,且點Pn(an,bn)與點(n,0)和(n+1,0)構成一個以點Pn(an,bn)為頂點的等腰三角形.
(1)求點Pn(an,bn)的縱坐標bn關于n的表達式;
(2)若對每一個自然數n,以bn,bn+1,bn+2能構成一個三角形,求a的范圍;
(3)設Bn=b1•b2•b3•…•bn(n∈N+),若a取(2)中確定的范圍內的最小整數時,求{Bn}中的最大項.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一级一级黄色片 | 欧美日韩一区二区三区在线观看 | 91视频免费看 | 久久国产精品99精国产 | 中文字幕一区二区三区乱码在线 | 日韩欧美一区二区三区免费观看 | 色综合久久久久综合99 | 欧美在线观看视频 | 国产精品毛片无码 | 色婷婷综合五月天 | 一区二区三区观看视频 | 欧美一区二区三区在线视频 | 亚洲精品免费在线播放 | 日韩在线视频免费观看 | 97精品国产97久久久久久免费 | 日韩欧美在线不卡 | 精品国产一区二区三区在线观看 | 成人作爱视频 | 国产一区免费 | 这里都是精品 | 天天干夜夜操 | 高清av网站 | 国产精品久久久久久久午夜片 | 成人毛片在线免费看 | 日本在线观看网站 | 中文字幕精品三级久久久 | 黄网在线| 国产一区免费在线观看 | 日韩欧美在线一区 | 国产 日韩 欧美 在线 | 欧美经典一区 | 久久久a| 亚洲一区二区av | 国产精品久久久久久久久久久久久久久久久 | 欧美在线a | av一区二区三区四区 | 日韩欧美国产一区二区 | 欧洲亚洲一区 | 精品黄网 | 色婷婷国产精品久久包臀 | 播放一级毛片 |