日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】定義:由橢圓的兩個焦點和短軸的一個頂點組成的三角形稱為該橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且短半軸長為的橢圓的方程;若在橢圓上存在兩點、關于直線對稱,求實數的取值范圍.

【答案】(1)相似;相似比為;(2);.

【解析】

(1)分別求出兩個橢圓的特征三角形的腰長和底邊長2,進而求出兩個橢圓的相似比;

(2)由題意易得與橢圓與橢圓的相似比為1:,進而可求得橢圓得長半軸長,即可得橢圓的方程為;設直線方程,聯立直線方程和橢圓的方程消元化簡,借助于的交點關于對稱和根的判別式大于零,可求得的取值范圍.

(1)由題意知:橢圓的特征三角形是腰長為=2,底邊長2=2的等腰三角形; 橢圓的特征三角形是腰長為=4,底邊長2=4的等腰三角形,則由,得兩個三角形相似,所以可得橢圓與橢圓相似,且相似比為;

(2)由橢圓和橢圓相似,且短半軸長分別為1,可得相似比為1:,則可得橢圓的長半軸長為2,所以橢圓的方程為:;

由題意設直線,M,N,中點坐標為(),

聯立消元化簡得:

,, ∴中點坐標為(,)

由中點在直線,可得=+1,解得=,

由直線與橢圓有兩個不同的交點得,

代入=解得.

故實數的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數列,且

B. , 依次成公比為2的等比數列,且

C. , , 依次成公比為的等比數列,且

D. 依次成公比為的等比數列,且

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位為促進職工業(yè)務技能提升,對該單位120名職工進行一次業(yè)務技能測試,測試項目共5項.現從中隨機抽取了10名職工的測試結果,將它們編號后得到它們的統(tǒng)計結果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).

表1:

編號\測試項目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項測試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項的項數的頻率代替每名職工合格項的項數的概率.

①設抽取的這10名職工中,每名職工測試合格的項數為,根據上面的測試結果統(tǒng)計表,列出的分布列,并估計這120名職工的平均得分;

②假設各名職工的各項測試結果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測試中,測試難度的計算公式為,其中為第項測試難度,為第項合格的人數,為參加測試的總人數.已知抽取的這10名職工每項測試合格人數及相應的實測難度如下表(表2):

表2:

測試項目

1

2

3

4

5

實測合格人數

8

8

7

7

2

定義統(tǒng)計量,其中為第項的實測難度,為第項的預測難度().規(guī)定:若,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:

表3:

測試項目

1

2

3

4

5

預測前預估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面上有個點,將每一個點染上紅色或藍色.從這個點中,任取個點,記個點顏色相同的所有不同取法總數為.

(1)若,求的最小值;

(2)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一布袋中裝有個小球,甲,乙兩個同學輪流且不放回的抓球,每次最少抓一個球,最多抓三個球,規(guī)定:由乙先抓,且誰抓到最后一個球誰贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市為了解游客人數的變化規(guī)律,提高旅游服務質量,收集并整理了月至月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.根據該折線圖,下列結論正確的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年減少

C. 各年的月接待游客量高峰期大致在

D. 各年月至月的月接待游客量相對于月至月,波動性較小,變化比較穩(wěn)定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的夾角為,,設,.

1)當時,求的夾角大;

2)是否存在實數,使得的夾角為鈍角,若存在求出的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面;

(2)若為線段的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統(tǒng)計表:

維修次數

8

9

10

11

12

頻數

10

20

30

30

10

x表示1臺機器在三年使用期內的維修次數,y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數.

(1)若=10,求yx的函數解析式;

(2)若要求“維修次數不大于的頻率不小于0.8,求n的最小值;

(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買10次還是11次維修服務?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品日日夜夜 | 国产精品九九九 | 欧美亚洲一级 | 精品一区电影 | 日本一区二区三区四区视频 | 久久成人免费 | 国产图区 | 古装三级在线播放 | 超碰青青青 | 亚洲国产天堂久久综合 | 欧美日韩精品综合 | 亚洲 欧美日韩 国产 中文 | 国产精品福利在线 | 狠狠插狠狠操 | 亚洲一区二区三区在线 | 久久精品1 | 91资源在线观看 | 人人爽人人爱 | 精品久久av | 亚洲国产一区二 | 欧美视频精品在线观看 | 神马久久精品 | 在线播放国产一区二区三区 | 日韩精品一区二区三区免费视频 | 91在线视频一区 | 黄色成人av| 国产精品女同一区二区 | 午夜在线一区 | 亚洲成人av | 区一区二区三在线观看 | 三级av| 久久一级 | 国产视频久久久久 | av一级毛片| 男人桶女人鸡鸡 | 特黄网站 | 欧美一区二区三区在线观看 | 国产富婆一级全黄大片 | 日本不卡一区二区 | 久久久久久一区 | 欧美日韩国产在线观看 |