【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)試問:函數(shù)的圖象上是否存在關(guān)于坐標原點對稱的點,若存在,求出這些點的坐標;若不存在,說明理由;
(3)若方程的三個實數(shù)根
、
、
滿足:
<
<
,且
,求實數(shù)a的值.
【答案】(1);(2)存在,分別是
,
;(3)
.
【解析】
(1)分別求出函數(shù)在每段上的值域,最后求出整個函數(shù)的值域即可.
(2)假設(shè)存在這樣的點,不妨設(shè),可求它的關(guān)于原點的對稱點坐標,再代入函數(shù)解析式中,能求出
說明存在性,求不出
則說明不存在這樣的點;
(3)判斷之間的大小關(guān)系,然后分類化簡方程,求出三個實數(shù)根
、
、
,再根據(jù)
,求出實數(shù)a的值.
(1)當時,
當時,
,因此函數(shù)的值域為
;
(2) 假設(shè)存在這樣的點,不妨設(shè),它關(guān)于原點的對稱點坐標為:
,由題意可知它也在函數(shù)圖象上,因此有
(舍去),
因此存在這樣兩個點,坐標分別為和
;
(3)由(1)可知:當時,
,顯然此時,
,
當時,若
時,解得
,若
時,解得
.
因此當時,
,此時方程化簡為:
解得,因此有
.
當時,
,此時方程化簡為:
,解得
,要想方程有三個不同的根,則必有
,此時
成立,因此有
,
又因為,
所以,解得
(舍去),
.
,因此
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
).
(1)討論函數(shù)極值點的個數(shù),并說明理由;
(2)若,
恒成立,求
的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=,∠BAD=90°.
(Ⅰ)求證:AD⊥BC;
(Ⅱ)求異面直線BC與MD所成角的余弦值;
(Ⅲ)求直線CD與平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,平面
.
(1)證明:平面
;
(2)過點作一平行于平面
的截面,畫出該截面,說明理由,并求夾在該截面與平面
之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為
,且
,圓
與
軸交于點
,
,
為橢圓
上的動點,
,
面積最大值為
.
(1)求圓與橢圓
的方程;
(2)圓的切線
交橢圓
于點
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查某生產(chǎn)線上質(zhì)量監(jiān)督員甲是否在現(xiàn)場對產(chǎn)品質(zhì)量好壞有無影響,現(xiàn)統(tǒng)計數(shù)據(jù)如下:質(zhì)量監(jiān)督員甲在現(xiàn)場時,1 000件產(chǎn)品中合格品有990件,次品有10件,甲不在現(xiàn)場時,500件產(chǎn)品中有合格品490件,次品有10件.
(1)補充下面列聯(lián)表,并初步判斷甲在不在現(xiàn)場與產(chǎn)品質(zhì)量是否有關(guān):
合格品數(shù)/件 | 次品數(shù)/件 | 總數(shù)/件 | |
甲在現(xiàn)場 | 990 | ||
甲不在現(xiàn)場 | 10 | ||
總數(shù)/件 |
(2)用獨立性檢驗的方法判斷能否在犯錯誤的概率不超過0.15的前提下認為“甲在不在現(xiàn)場與產(chǎn)品質(zhì)量有關(guān)”?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線
上的點均在曲線
外,且對
上任意一點
,
到直線
的距離等于該點與曲線
上點的距離的最小值.
(1)求動點的軌跡
的方程;
(2)過點的直線與曲線
交于不同的兩點
、
,過點
的直線與曲線
交于另一點
,且直線
過點
,求證:直線
過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com