【題目】醫學上所說的“三高”通常是指血脂增高、血壓增高、血糖增高等疾病.為了解“三高”疾病是否與性別有關,醫院隨機對入院的60人進行了問卷調查,得到了如下的列聯表:
(1)請將列聯表補充完整;
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(2)能否在犯錯誤的概率不超過0.005的前提下認為患“三高”疾病與性別有關? 下列的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= .
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為F1 , F2 , 離心率為
,短軸上的兩個頂點為A,B(A在B的上方),且四邊形AF1BF2的面積為8.
(1)求橢圓C的方程;
(2)設動直線y=kx+4與橢圓C交于不同的兩點M,N,直線y=1與直線BM交于點G,求證:A,G,N三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1 .
(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ +
}為等比數列,并求{an}的通項公式an;
(2)數列{bn}滿足bn=(3n﹣1) an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|x﹣a|,a<0.
(Ⅰ)證明f(x)+f(﹣ )≥2;
(Ⅱ)若不等式f(x)+f(2x)< 的解集非空,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業常年生產一種出口產品,根據預測可知,進入21世紀以來,該產品的產量平穩增長.記2009年為第1年,且前4年中,第年與年產量
萬件之間的關系如下表所示:
若近似符合以下三種函數模型之一:
=
=
=
.
(1)找出你認為最適合的函數模型,并說明理由,然后選取其中你認為最適合的數據求出相應的解析式;
(2)因遭受某國對該產品進行反傾銷的影響,2015年的年產量比預計減少,試根據所建立的函數模型,確定2015年的年產量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在區間(0,ln3)上具有相同的單調性,求實數a的取值范圍;
(2)設函數h(x)=x2﹣f(x)有兩個極值點x1、x2 , 且x1∈(0, ),求證:h(x1)﹣h(x2)>
﹣ln2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】潮州統計局就某地居民的月收入調查了人,并根據所得數據畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據頻率分布直方圖算出樣本數據的中位數;
(3)為了分析居民的收入與年齡、職業等方面的關系,必須按月收入再從這人中分層抽樣方法抽出
人作進一步分析,則月收入在
的這段應抽多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M,N兩點.
(1)求k的取值范圍;
(2)請問是否存在實數k使得 (其中O為坐標原點),如果存在請求出k的值,并求|MN|;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com