【題目】設函數y= 的定義域為A,函數y=ln(1﹣x)的定義域為B,則A∩B=( )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)
【答案】D
【解析】解:由4﹣x2≥0,解得:﹣2≤x≤2,則函數y= 的定義域[﹣2,2],
由對數函數的定義域可知:1﹣x>0,解得:x<1,則函數y=ln(1﹣x)的定義域(﹣∞,1),
則A∩B=[﹣2,1),
故選D.
【考點精析】解答此題的關鍵在于理解集合的交集運算的相關知識,掌握交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立,以及對函數的定義域及其求法的理解,了解求函數的定義域時,一般遵循以下原則:①
是整式時,定義域是全體實數;②
是分式函數時,定義域是使分母不為零的一切實數;③
是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.
科目:高中數學 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 =λ
+μ
,則λ+μ的最大值為( )
A.3
B.2
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導函數f′(x)的極值點是f(x)的零點.(極值點是指函數取極值時對應的自變量的值)
(Ⅰ)求b關于a的函數關系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數的所有極值之和不小于﹣ ,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知當x∈[0,1]時,函數y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個交點,則正實數m的取值范圍是( )
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2
,+∞)
D.(0, ]∪[3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上且周期為1的函數,在區間[0,1)上,f(x)= ,其中集合D={x|x=
,n∈N*},則方程f(x)﹣lgx=0的解的個數是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為二次函數,且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數f(x)的最小值(用t表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com