日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

如圖,已知矩形ABCD中,|AD|=3,|AB|=4.將矩形ABCD沿對角線BD折起,使得面BCD⊥面ABD.現以D為原點,DB作為y軸的正方向,建立如圖空間直角坐標系,此時點A恰好在xDy坐標平面內.試求A,C兩點的坐標.

解:如圖,由于面BCD⊥面ABD,從面BCD引棱DB的垂線CF即為面ABD的垂線,同理可得AE即為面BCD的垂線
∵矩形ABCD中,|AD|=3,|AB|=4,∴BD=5
在直角三角形DAB與直角三角形DCB中,由射影定理知
DA2=DE×BD,即9=DE×5,得DE=
BC2=BF×BD,即9=BF×5得BF=
由勾股定理可解得CF=AE=,故EF=5-DE-BF=5--=
∴DF=DE+EF=+=
故在空間坐標系中,得A,C兩點的坐標為A(),C(0,
分析:由于面BCD⊥面ABD,從面BCD引棱DB的垂線CF即為面ABD的垂線,同理可得AE即為面BCD的垂線,故只需求得AE,CF,DE,DF的長度即可.
點評:本題考點是空間坐標系,考查求空間坐標系中點的坐標的方法,及坐標符號正負的確定.
練習冊系列答案
相關習題

科目:高中數學 來源:名師指點學高中課程 數學 高二(下) 題型:044

如圖,已知在矩形ABCD中,AB=3,BC=4,沿對角線AC將△ABC折起,使B點在平面ADC內的射影恰好落在AD上,求:

(1)異面直線AB與CD成的角;

(2)異面直線AB與CD的距離;

(3)二面角B-AC-D的大小.

查看答案和解析>>

科目:高中數學 來源:2014屆安徽省高一下學期期中考試數學試卷(解析版) 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、

PC的中點.

(1)求證:EF∥平面PAD;

(2)求證:EF⊥CD;

(3)若ÐPDA=45°求EF與平面ABCD所成的角的大小.

【解析】本試題主要考查了線面平行和線線垂直的運用,以及線面角的求解的綜合運用

第一問中,利用連AC,設AC中點為O,連OF、OE在△PAC中,∵ F、O分別為PC、AC的中點   ∴ FO∥PA …………①在△ABC中,∵ E、O分別為AB、AC的中點 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二問中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO為EF在平面AC內的射影       ∴ CD⊥EF.

第三問中,若ÐPDA=45°,則 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

證:連AC,設AC中點為O,連OF、OE(1)在△PAC中,∵ F、O分別為PC、AC的中點∴ FO∥PA …………①    在△ABC中,∵ E、O分別為AB、AC的中點  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②綜合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO為EF在平面AC內的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,則 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省南京市高三第二次模擬考試數學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區域作答。解答應寫出文字說明、證明過程或演算步驟。

A、選修4-1:幾何證明選講

   如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換

已知 為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。

C、選修4-4:坐標系與參數方程

   在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。

D、選修4-5:不等式選講

   已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知幾何體ABC-DEF中,△ABC及△DEF都是邊長為2的等邊三角形,四邊形ABEF為矩形,且CD=AF+2,CD//AF,O為AB中點.

(1)求證:AB⊥平面DCO

(2)若M為CD中點,AF=x,則當x取何值時,使AM與平面ABEF所成角為45°?

試求相應的x值的.

(3)求該幾何體在(2)的條件下的體積.

查看答案和解析>>

科目:高中數學 來源:2011屆江蘇省南京市高三第二次模擬考試數學卷 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10,共計20分。請在答題卡指定區域作答。解答應寫出文字說明、證明過程或演算步驟。
A、選修4-1:幾何證明選講
如圖,已知梯形ABCD為圓內接四邊形,AD//BC,過C作該圓的切線,交AD的延長線于E,求證:ΔABC∽ΔEDC。

B、選修4-2:矩形與變換
已知為矩陣屬于λ的一個特征向量,求實數a,λ的值及A2。
C、選修4-4:坐標系與參數方程
在平面直角坐標系xoy中,曲線C的參數方程為(α為參數),曲線D的參數方程為,(t為參數)。若曲線C、D有公共點,求實數m的取值范圍。
D、選修4-5:不等式選講
已知a,b都是正實數,且ab=2。求證:(1+2a)(1+b)≥9。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色欧美在线 | 欧美另类一二三四 | 伊人久久一区二区三区 | 一二三区精品 | 中文字幕在线视频免费播放 | 欧美一区二区三区免费观看 | 国产手机视频在线 | 色婷婷国产精品久久包臀 | 91麻豆精品一二三区在线 | 久久精品美女 | 超碰97人人干 | 国产精品一区二区三区99 | 99福利视频 | 久草色视频在线观看 | 九热精品 | 久久久久久久久久久久久国产精品 | 久久这里只有精品23 | 久久99深爱久久99精品 | 亚洲第一黄色网 | 一区二区不卡 | 亚洲成人av在线 | 日韩欧美~中文字幕 | 欧美乱码精品一区二区三 | 国精品一区| 国产精品98 | 国产一级视频 | 97电影在线观看 | 理论片一区 | 成人在线免费观看 | 欧美中文字幕在线 | 久久精品国产v日韩v亚洲 | ririsao久久精品一区 | 91精品久久久久久久久中文字幕 | 91新视频| 久久精品国产亚洲a∨蜜臀 性视频网站免费 | 亚洲精品视频播放 | 一级免费大片 | 国产高清网站 | 国产一区精品在线 | 成人av自拍 | 91精品久久久久 |