解:(1)點(n,S
n)在二次函數f(x)=x
2+c的圖象上,
∴

,
a
1=S
1=1+c,
a
2=S
2-S
1=(4+c)-(1+c)=3,
a
3=S
3-S
2=5,
又∵a
n是等差數列,
∴6+c=6,c=0,
d=3-1=2,a
n=1+2(n-1)=2n-1.
(2)∵a
n=2n-1,k
n=

,
∴

,
∴T
n=

+

+

+…+

+

,…①

=

+…+

+

,…②
①-②,得

=

+2(

+…+

)-

=

=

.
∴T
n=3-

.
分析:(1)由點(n,S
n)在二次函數f(x)=x
2+c的圖象上,知

,再由a
n是等差數列,能求出c,a
n.
(2)由(1)知

,故T
n=

+

+

+…+

+

,利用錯位相減法能夠求出T
n.
點評:本題考查數列的通項公式和前n項和的求法,解題時要認真審題,仔細解答,注意錯位相減法和合理運用.