(本題滿分14分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.
(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.
(1)證法1:∵,
∴
且
∴四邊形EFBC是平行四邊形 ∴H為FC的中點-------------2分
又∵G是FD的中點
∴---------------------------------------4分
∵平面CDE,
平面CDE
∴GH∥平面CDE -------------------------------------7分
證法2:連結EA,∵ADEF是正方形 ∴G是AE的中點 --------------1分
∴在⊿EAB中, ----------------------------------3分
又∵AB∥CD,∴GH∥CD,----------------------------------4分
∵平面CDE,
平面CDE
∴GH∥平面CDE ---------------------------------------------7分
(2)∵平面ADEF⊥平面ABCD,交線為AD
且FA⊥AD, ∴FA⊥平面ABCD.---------------------------------------------------9分
∵, ∴
又∵
,
∴BD⊥CD ----------------------------------------------------------------------------------------11分
∴ =
∴ =
-----------------------------------------14分
【解析】略
科目:高中數學 來源:2012-2013學年吉林省高三第一次月考文科數學試卷(解析版) 題型:解答題
(本題滿分14分)已知函數
(1)若,求x的值;
(2)若對于
恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題
(本題滿分14分)
已知橢圓:
的離心率為
,過坐標原點
且斜率為
的直線
與
相交于
、
,
.
⑴求、
的值;
⑵若動圓與橢圓
和直線
都沒有公共點,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數學理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,
求的最大值;
(3)當取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com