日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)的圖象關于點(a,b)對稱,則有f(x)+f(2a-x)=2b對任意定義域內的x均成立.
(1)若函數數學公式的圖象關于點(0,1)對稱,求實數m的值;
(2)已知函數g(x)=-x2+nx+1(x>0)在(1)的條件下,若對實數x>0及t>0時恒有不等式g(x)<f(t)成立,求實數n的取值范圍.

解:(1)由題設,∵函數的圖象關于點(0,1)對稱,
∴f(x)+f(-x)=2,
+=2,
∴m=1;
(2)由(1)得f(t)=t++1(t>0),
當t>0時,t++1+1=3,所以其最小值為f(1)=3,
g(x)=-x2+nx+1=-(x-)2+1+
①當<0,即n<0時,g(x)max=1+<3,∴n∈(-2,0),
②當≥0,即n≥0時,g(x)max<1<3,∴n∈[0,+∞),
由①②得n∈(-2,+∞).
分析:(1)利用函數的圖象關于點(0,1)對稱,可得f(x)+f(-x)=2,代入化簡,可得實數m的值;
(2)根據(1)中函數的解析式,求出t>0時f(t)的最小值,利用二次函數性分類討論可求得g(x)的最大值,根據對實數x>0及t>0時恒有不等式g(x)<f(t)成立,得g(x)max<f(t)min,由此可求實數n的取值范圍.
點評:本題考查函數與方程的綜合應用,考查恒成立條件下求參數取值范圍問題,考查分類討論思想,恒成立問題基本思路是轉化為求函數的最值問題解決,本題運用基本不等式及二次函數性質求得函數最值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)的圖象有且僅有由五個點構成,它們分別為(1,2),(2,3),(3,3),(4,2),(5,2),則f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•天門模擬)已知函數f(x)的圖象經過點(1,λ),且對任意x∈R,都有f(x+1)=f(x)+2.數列{an}滿足a1=λ-2,2an+1=
2n,n為奇數
f(an),n為偶數

(I)求f(n)(n∈N*)的表達式;
(II)設λ=3,求a1+a2+a3+…+a2n
(III)若對任意n∈N*,總有anan+1<an+1an+2,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的圖象關于原點對稱,且當x<0時,f(x)=2x-4,那么當x>0時,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•焦作一模)已知函數f(x)的圖象過點(
π
4
,-
1
2
),它的導函數f′(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其中A>0,ω>0,|φ|<
π
2
,為了得到函
數f(x)的圖象,只要將函數y=sinx(x∈R)的圖象上所有的點(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的圖象關于直線x=2對稱,且當x≠2時其導函數f′(x)滿足xf′(x)>2f′(x),若2<a<4,則下列表示大小關系的式子正確的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区不卡 | 色婷婷免费 | 国产69精品久久久久观看黑料 | 视色网站 | 国产午夜精品久久久久久久 | 国产福利一区视频 | 日本激情网 | 国产一区二区三区久久久 | 亚洲日本欧美 | 亚洲视频一区二区三区四区 | 国产精品粉嫩白浆在线观看 | 欧美同性三人交 | 国产视频三区 | 日韩欧美一区二区视频 | 精品自拍视频 | 日韩免费在线 | 国产成人精品一区二区三区四区 | 免费一区二区三区 | 国产精品亚洲第一区在线暖暖韩国 | 国产精品九九九 | 国产视频一区二区在线观看 | 玖玖玖影院 | 色综久久| 免费观看亚洲 | 国产成人精品久久 | 成人国产精品久久久 | 在线观看毛片视频 | 亚洲欧美日韩国产 | 在线观看亚洲一区 | 97人人超碰 | 免费在线成人av | 亚洲色图第八页 | 亚洲欧美综合精品久久成人 | 久久久久久久久国产 | 国产伦精品一区二区 | 精品久久久久久久 | 国产黄色大片网站 | 91免费在线 | 国产精品自拍一区 | 亚洲精品日韩综合观看成人91 | 99爱视频 |