(本小題滿分12分)
三棱錐中,
,
,
(1) 求證:面面
(2) 求二面角的余弦值.
(1)取BC中點O,連接AO,PO,通過△POA≌△POB≌△POC,得到∠POA=∠POB=∠POC=90°,推出PO⊥面BCD,∴面PBC⊥面ABC。
(2)cos(n1, n2)==
。
解析試題分析:(1) 證明:取BC中點O,連接AO,PO,由已知△BAC為直角三角形,
所以可得OA=OB=OC,又知PA=PB=PC,
則△POA≌△POB≌△POC 2分
∴∠POA=∠POB=∠POC=90°,∴PO⊥OB,PO⊥OA,OB∩OA=O
所以PO⊥面BCD, 4分面ABC,∴面PBC⊥面ABC 5分
(2) 解:過O作OD與BC垂直,交AC于D點,
如圖建立坐標系O—xyz
則,
,
,
,
7分
設面PAB的法向量為n1=(x,y,z),由n1· =0,n1·
=0,可知n1=(1,-
,1)
同理可求得面PAC的法向量為n1=(3,,1) 10分
cos(n1, n2)==
12分
考點:本題主要考查立體幾何中的垂直關系,角的計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,(2)小題,應用空間向量,使問題解答得以簡化。
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點.
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐中,
,
,
,
,
, 點
,
分別在棱
上,且
,
(Ⅰ)求證:平面PAC
(Ⅱ)當為
的中點時,求
與平面
所成的角的正弦值;
(Ⅲ)是否存在點使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖1,在等腰梯形中,
,
,
,
為
上一點,
,且
.將梯形
沿
折成直二面角
,如圖2所示.
(Ⅰ)求證:平面平面
;
(Ⅱ)設點關于點
的對稱點為
,點
在
所在平面內,且直線
與平面
所成的角為
,試求出點
到點
的最短距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com