日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

19.在△ABC中,A,B,C的對(duì)邊分別為$a,b,c,\overrightarrow m=({a,0}),\overrightarrow b=({1,cosB})$,且$\overrightarrow m•\overrightarrow n=2acosB$.
(1)求B的大小;
(2)若△ABC的面積為$2\sqrt{3}$,且a+c=6,求b.

分析 (1)根據(jù)$\overrightarrow{m}$•$\overrightarrow{n}$=2acosB,得a=2acosB,求出B的值即可;(2)根據(jù)三角形的面積求出ac=8,由a+c=6,聯(lián)立方程組,求出a,c的值,根據(jù)余弦定理求出b的值即可.

解答 解:(1)由$\overrightarrow{m}$=(a,0),$\overrightarrow{n}$=(1,cosB),
$\overrightarrow{m}$•$\overrightarrow{n}$=2acosB,得a=2acosB,
故cosB=$\frac{1}{2}$,得B=$\frac{π}{3}$;
(2)S△ABC=$\frac{1}{2}$acsinB=2$\sqrt{3}$得ac=8,
聯(lián)立$\left\{\begin{array}{l}{ac=8}\\{a+c=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=4}\\{c=2}\end{array}\right.$或$\left\{\begin{array}{l}{a=2}\\{c=4}\end{array}\right.$,
由余弦定理得b2=16+4-8=12,
解得:b=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了向量的乘法,考查余弦定理的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x-1$,則下列說法正確的是(  )
A.$(\frac{7π}{12},0)$是函數(shù)y=f(x)的對(duì)稱中心B.$x=\frac{7π}{12}$是函數(shù)y=f(x)的對(duì)稱軸
C.$(-\frac{π}{12},0)$是函數(shù)y=f(x)的對(duì)稱中心D.$x=-\frac{π}{12}$是函數(shù)y=f(x)的對(duì)稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若坐標(biāo)原點(diǎn)在圓x2+y2-2mx+2my+2m2-4=0的內(nèi)部,則實(shí)數(shù)m的取值范圍是(  )
A.(-1,1)B.(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)C.(-$\sqrt{3}$,$\sqrt{3}$)D.(-$\sqrt{2}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知F(1,0)為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦點(diǎn),離心率$\frac{\sqrt{2}}{2}$.
(1)求橢圓的方程;
(2)P為橢圓上一點(diǎn),橢圓在P點(diǎn)處的切線與直線x=c和右準(zhǔn)線x=$\frac{{a}^{2}}{c}$分別交于點(diǎn)M,N.
①若P(0,1),求$\frac{MF}{NF}$的值;
②探究當(dāng)P在橢圓上移動(dòng)時(shí),$\frac{MF}{NF}$的值是否為定值?若是,求出此定值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}({3-a})x-1,x≤5\\{a^{x-4}},x>5\end{array}\right.({a>0,a≠1})$,數(shù)列{an}滿足${a_n}=f(n)({n∈{N^*}})$,且{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)a的取值范圍是(  )
A.(1,3)B.(2,3)C.$[{\frac{7}{3},3})$D.$({1,\frac{7}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若偶函數(shù)y=f(x)(x∈R)滿足f(1+x)=f(1-x),且當(dāng)x∈[-1,0]時(shí),f(x)=x2,則函數(shù)g(x)=f(x)-|lgx|的零點(diǎn)個(gè)數(shù)為10個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖正四面體(所有棱長都相等)D-ABC中,動(dòng)點(diǎn)P在平面BCD上,且滿足∠PAD=30°,若點(diǎn)P在平面ABC上的射影為P′,則sin∠P′AB的最大值為(  )
A.$\frac{2\sqrt{7}}{7}$B.$\frac{\sqrt{6}-\sqrt{2}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為B.Q為拋物線y2=24x的焦點(diǎn),且$\overrightarrow{{F_1}B}•\overrightarrow{QB}=0$,$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{Q{F_1}}$=0
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過定點(diǎn)P(0,4)的直線l與橢圓C交于M,N兩點(diǎn)(M在P,N之間),設(shè)直線l的斜率為k(k>0),在x軸上是否存在點(diǎn)A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\sqrt{lo{g}_{\frac{1}{2}}(2x+1)}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 中国农村毛片免费播放 | 国产欧美久久久 | 日韩毛片视频 | a级成人毛片 | 中文字幕在线免费视频 | 91精品国产日韩91久久久久久 | 五十路av| 一级黄色网 | 黄色三级在线 | 欧美日韩精品久久 | 国产一区二区三区 | av在线播放网站 | 亚洲高清在线 | 亚洲黄色录像 | 人人爽人人爽 | 亚洲一区二区三区视频 | 激情视频网 | 一级大片免费看 | 天天射天天操天天干 | 久草免费在线视频 | www.啪啪| 精品久久久一区二区 | 国产51自产区 | av青青草原| 国产又色又爽又黄又免费 | 久久精视频 | 精品久久久久久一区二区里番 | 91成人精品| 国产日韩在线视频 | 国产精品成人免费视频 | 一级免费黄色片 | 四虎影院最新网址 | 久久伊人影院 | 韩日一区二区 | av网站导航| 色婷婷综合在线 | 国产日韩精品视频 | 久久久久久久国产 | av在线成人 | 中文字幕www | 精品国产aⅴ麻豆 |