【題目】已知橢圓C: 的長軸長為4,焦距為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過動點M(0,m)(m>0)的直線交x軸與點N,交C于點A,P(P在第一象限),且M是線段PN的中點,過點P作x軸的垂線交C于另一點Q,延長線QM交C于點B.
(i)設直線PM、QM的斜率分別為k、,證明
為定值.
(ii)求直線AB的斜率的最小值.
【答案】(Ⅰ) ;(Ⅱ)(i)證明見解析;(ii)
.
【解析】試題分析:
(Ⅰ)由題意可得,橢圓C的方程為
.
(Ⅱ)(i)設,由題意可得
,結合斜率公式可得PM的斜率
,QM的斜率
,故
為定值-3.
(ii)設,直線PA的方程為
,與橢圓方程聯立可得
.則
,
,同理
,故
.結合均值不等式的結論可得當且僅當
時,直線AB的斜率有最小值為
.
試題解析:
(Ⅰ)設橢圓的半焦距為c,
由題意知,
所以,
所以橢圓C的方程為.
(Ⅱ)(i)設,
由,可得
,
所以直線PM的斜率,
直線QM的斜率,
此時,所以
為定值-3.
(ii)設,
直線PA的方程為,
直線QB的方程為,
聯立,
整理得.
由可得
,
所以,
同理,
所以,
,
所以.
由,可知
,
所以,等號當且僅當
時取得,
此時,即
,符合題意,
所以直線AB的斜率的最小值為.
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的一個上界.已知函數
,
.
(1)若函數為奇函數,求實數
的值;
(2)在(1)的條件下,求函數在區間
上的所有上界構成的集合;
(3)若函數在
上是以3為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】片森林原來面積為a,計劃每年砍伐森林面積是上一年末森林面積的p%,當砍伐到原來面積的一半時,所用時間是10年,已知到今年末為止,森林剩余面積為原來面積的,為保護生態環境,森林面積至少要保留原來面積的
.
(1)求每年砍伐面積的百分比p%;
(2)到今年為止,該森林已砍伐了多少年?
(3)今年以后至多還能再砍伐多少年?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,角α的頂點是原點,始邊與x軸正半軸重合,終邊交單位圓于點A,且.將角α的終邊按逆時針方向旋轉
,交單位圓于點B.記A(x1,y1),B(x2,y2).
(Ⅰ)若,求x2;
(Ⅱ)分別過A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求證:AC∥平面DEF;
(Ⅲ)求三棱錐A—DEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把下列演繹推理寫成三段論的形式.
(1)在標準大氣壓下,水的沸點是100℃,所以在標準大氣壓下把水加熱到100℃時,水會沸騰;
(2)一切奇數都不能被2整除, 是奇數,所以
不能被2整除;
(3)三角函數都是周期函數, 是三角函數,因此
是周期函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數在某一個周期內的圖象時,列表并填入了部分數據,如下表:
(1)請將上表數據補充完整;函數的解析式為
(直接寫出結果即可);
(2)根據表格中的數據作出一個周期的圖象;
(3)求函數在區間
上的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com