日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)對任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時,f(x)>0.
(1)求證:函f(x)是奇函數;
(2)求證:函數f(x)是R上的減函數;
(3)若定義在(-2,2)上的函數f(x)滿足f(-m)+f(1-m)<0,求實數m的取值范圍.
(1)證明:∵f(x+y)=f(x)+f(y)
∴令x=y=0 有f (0 )=0
令y=-x 有:0=f(0)=f(x+(-x))=f(x)+f(-x)
∴函數f(x)是奇函數;…(5分)
(2)證明:設x2>x1則x1-x2<0
∵當x<0時,f(x)>0
∴f(x1-x2)>0
∴f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)>f(x2
∴函數f(x)是R上的減函數
(3)∵f(-m)+f(1-m)<0,∴f(-m)<f(m-1),
且f(-m)+f(1-m)=f(1-2m)
-2<-m<2
-2<1-m<2
-2<1-2m<2
-m>m-1
,解得:-
1
2
<m<
1
2
.…(16分)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

若實數x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a3+b3比a2b+ab2遠離2ab
ab
;
(3)已知函數f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數f(x)的解析式,并指出它的基本性質(結論不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

若實數x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函數f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調性(結論不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
ex
ex+1

(Ⅰ)證明函數y=f(x)的圖象關于點(0,
1
2
)對稱;
(Ⅱ)設y=f-1(x)為y=f(x)的反函數,令g(x)=f-1(
x+1
x+2
),是否存在實數b
,使得任給a∈[
1
4
,
1
3
],對任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•海淀區一模)已知函數f(x)=
1,x∈Q
0,x∈CRQ
,則f(f(x))=
1
1

下面三個命題中,所有真命題的序號是
①②③
①②③

①函數f(x)是偶函數;
②任取一個不為零的有理數T,f(x+T)=f(x)對x∈R恒成立;
③存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91hd精品少妇| 日韩精品在线免费观看视频 | 亚洲wu码| 91在线看片 | 日韩一区二区在线观看 | 青草青草久热精品视频在线观看 | 国产精品久久久久毛片软件 | 欧美中文在线观看 | 国产一级免费视频 | 国产精品污www在线观看 | 精品超碰 | 国产免费av一区二区三区 | 99re视频在线观看 | 噜噜av| 成人欧美一区二区三区黑人 | 久久天堂av综合合色蜜桃网 | 日韩一区二区三区免费观看 | 久久av一区二区三区 | 日一区二区 | 国产91富婆养生按摩会所 | 爱啪导航一精品导航站 | h在线看| 久久久亚洲 | 久草免费电影 | 日韩精品一区二区三区中文字幕 | 人人草视频在线观看 | 亚洲精品日韩综合观看成人91 | 日韩 欧美 激情 | 黄色视屏免费观看 | 国产精品美女久久久久久久久久久 | 国产亚洲一区二区在线 | 四虎最新网站 | 成人高清在线观看 | 久久99热精品免费观看牛牛 | 国产精品久久久99 | 在线一区二区三区 | 国产成人免费在线观看 | 日韩av一区二区三区四区 | 国产精品视频黄色 | 国产精品高颜值在线观看 | 国产一区二区三区四区在线观看 |