日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(Ⅰ)求f(x)=
x-2
x-3
+lg
4-x
的定義域;     
(Ⅱ)求g(x)=2 1-x3的值域.
分析:(1)由分式的分母不為零且二次根號的被開方數大于或等于零,對數的真數大于0建立關于x的不等式組,解之即可得到函數f(x)的定義域.
(2)先令u=1-x3,按三次函數求其值域,再用指數函數的單調性求原函數的值域.
解答:解:(1)∵
x-2≥0
x-3≠0
4-x>0
,解之得2≤x<4且x≠3
∴函數f(x)=
x-2
x-3
+lg
4-x
的定義域{x|2≤x<4且x≠3},即[2,3)∪(3,4).
(2)令u=1-x3,則u∈R,
∴y>0
故其值域是(0,+∞).
點評:本題主要考查函數的定義域的求法和值域的求法,這是給定解析式的類型,定義域涉及到對數函數要求真數大于零且底數大于零不等于1,值域求解,涉及到復合函數一是轉化為基本函數求解,二是用導數法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2014屆山東省高一第二學期期中考試數學試卷(解析版) 題型:解答題

已知函數f(x)=cos(2x+)+sinx·cosx

⑴ 求函數f(x)的單調減區間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問中,∵xÎ[0, ],∴2x-Î[-,],

∴當2x-=-,即x=0時,f(x)min=-,

當2x-, 即x=時,f(x)max=1

第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當2x-=-,即x=0時,f(x)min=-,        ……………………8分

當2x-, 即x=時,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美激情一区二区三区 | 超碰香蕉 | 亚洲天堂影院 | 日韩视频精品 | 欧美日韩高清在线 | 99视频| 日韩欧美中文字幕在线视频 | 在线欧美日韩 | 中文字幕久久精品 | 亚洲精品乱码久久久久久按摩观 | 中文字幕91| 日本不卡高字幕在线2019 | 国产一区av在线 | 国产日韩精品在线 | 激情视频网站 | 电影91久久久 | 精品久久久久久亚洲精品 | 免费激情小视频 | 欧美激情一区二区三区 | 中文字幕 视频一区 | 欧美精品久久久久久久久久丰满 | 久久精品国产亚洲一区二区三区 | 国产精品久久国产精品 | 国产精品中文在线 | 午夜影院在线观看视频 | 国产第1页 | 亚洲精品久久久一区二区三区 | av在线一区二区三区 | 成年人黄色一级片 | 国产高清无密码一区二区三区 | 亚洲国产一区二区三区, | 97色涩 | 欧洲大片精品免费永久看nba | 岛国视频在线 | 亚洲九九九| 日本三级网站在线观看 | 色综合99| 精品一区二区不卡 | 久久久av电影 | 国产精品久久久久久亚洲调教 | 亚洲一区二区三区中文字幕 |