日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設f(x)=ax3+bx2+cx+d(a≠0)
(Ⅰ)f(x)的圖象關于原點對稱,當x=
12
時,f(x)的極小值為-1,求f(x)的解析式.
(Ⅱ)若a=b=d=1,f(x)是R上的單調函數,求c的取值范圍.
分析:(I)根據圖象關于原點對稱得出f(x)為奇函數,從而得出b=d=0,再由x=
1
2
時,f(x)的極小值為-1,建立關于a、c的方程組,解出a、c的值即可得到f(x)的解析式.
(II)若a=b=d=1,則f(x)=x3+x2+cx+1,由題意f'(x)在R上恒為非負或者恒為非正.因此求出導數并利用二次函數的性質建立關于c的不等式,解之即可得到實數c的取值范圍.
解答:解::(I)因為圖象關于原點對稱,所以f(x)為奇函數,所以b=0,d=0;
可得f(x)=ax3+cx,因此f'(x)=3ax2+c
∵當x=
1
2
時,f(x)的極小值為-1,
f′(
1
2
)
=
3a
4
+c=0,且f(
1
2
)=
1
8
a+
1
2
c=-1
解之得a=4,c=-3,得f(x)=4x3-3x
∴所求函數的解析式為f(x)=4x3-3x;
(Ⅱ)∵a=b=d=1,∴f(x)=ax3+bx2+cx+d=x3+x2+cx+1
∵f(x)是R上的單調函數,∴f'(x)在R上恒為非負或者恒為非正
∵f'(x)=3x2+2x+c,
∴△=4-12c≤0,解之得c
1
3
.可得實數c的取值范圍為[
1
3
,+∞
點評:本題給出三次多項式函數,研究函數的奇偶性與單調性.著重考查了利用導數研究函數的單調性、二次函數的性質和不等式恒成立等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)=ax3+bx2+cx+d,f′(x)為其導數,如圖是y=x•f′(x)圖象的一部分,則f(x)的極大值與極小值分別為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax3+bx2+4x,其導函數y=f′(x)的圖象經過點(
23
,0)
,(2,0),
(1)求函數f(x)的解析式和極值;
(2)對x∈[0,3]都有f(x)≥mx2恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax3+bx2+cx的極小值為-8,其導函數y=f′(x)的圖象開口向下且經過點(-2,0),(
23
,0)

(I)求f(x)的解析式;
(II)方程f(x)+p=0有唯一實數解,求實數P的取值范圍.
(II)若對x∈[-3,3]都有f(x)≥m2-14m恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax3+bx+c(a≠0)是奇函數,其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導函數f′(x)的最小值為-12,
(1)求a,b,c的值;        
(2)求函數f(x)在[-1,3]上的最值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美午夜在线 | 日本免费黄色网 | 正在播放亚洲 | 1区2区3区视频 | 国产精品电影久久 | 日韩一区二区三区精品 | 日日精品| 久久久91 | 国产情侣免费视频 | 国产一区二区在线播放 | 免费在线观看一级毛片 | av官网| 一区二区三区四区在线播放 | 国产精品视频1区 | 一区二区三区在线 | 精品久久久久国产免费 | 亚洲高清在线观看 | 美日韩免费视频 | 日日摸天天做天天添天天欢 | 欧美与黑人午夜性猛交 | 国产精品久久久久久久久久久久冷 | 91精选国产| 国产精品黄网站在线观看 | 欧美午夜理伦三级在线观看 | 天天澡天天狠天天天做 | 在线播放黄 | 国产精品18久久久久久首页狼 | 色综久久 | 国产精品久久久久一区二区三区共 | 玖色视频 | 国产综合精品一区二区三区 | 午夜伦理影院 | 黄色av电影| 精品国产一区二区三区久久久 | 999久久久| 国产一区二区三区四区在线观看 | 国产精品欧美久久久久一区二区 | 成人久久亚洲 | 国产成人久久777777 | 亚洲免费在线播放 | 国产成人在线免费观看视频 |